
EPT: Error Propagation Toolbox

F. Antonacci §, P. Bestagini §, A. Canclini §, M. Compagnoni †, A. Sarti §

§ Dipartimento di Elettronica ed Informazione
† Dipartimento di Matematica “Francesco Brioschi”

Politecnico di Milano, piazza Leonardo da Vinci, 20133, Milano, Italy
marco.compagnoni@polimi.it, antonacci/bestagini/canclini/sarti@elet.polimi.it

July 27, 2012

If you use the Error Propagation Toolbox in your research, please include in your publications
references specific to [1] from which the toolbox is inspired.

1 Introduction

EPT is a Matlabr toolbox for analyzing the propagation of the measurement error on an arbitrary
unbiased (or small-biased) estimation problem based on the optimization of a cost function. Such
problems are, in general, formulated as the combination of multiple measurements (or observations)
into a cost function, whose global minimum gives the best estimate of the variable of interest.
Provided the covariance matrix of the observations and the symbolic equation of the cost function,
EPT calculates the covariance of the estimation, assuming negligible bias on the estimated variable.
EPT is based on basic concepts of the catastrophe theory [2], which makes possible to derive a
linear relationship between the measurement error and the estimation error. For details on the
development of the error propagation analysis, the reader is referred to [1].

It is interesting to observe that the theory implemented in EPT is more general than the
well-known Cramer-Rao Lower Bound (CRLB). In fact, while CRLB provides a bound for an
estimation problem, the approach based on catastrophe theory gives the theoretical limit for a
specific cost function applied to that problem. Moreover, it can be shown that CRLB corresponds
to the error propagation analysis applied to a maximum-likelihood cost function, and therefore it
can be interpreted as a particular case of the error propagation analysis.

This document is structured as follows. In Section 2 a description of the functionalities of EPT
is reported. Section 3 contains a set of usage examples included in EPT.

2 Error propagation analysis using EPT

EPT is suitable for predicting the accuracy of estimation problems in the form

x̂ = argmin
x

J(x, c) , (1)

where:

• J(x, c) is a generic cost function, whose Hessian Hx,x evaluated at the global minimum is
non-singular;

• x = [x1, x2, . . . xM]T ∈ R
M is a vector of M unknowns to be estimated;

• c = [c1, c2, . . . cN]T ∈ R
N is a vector of N measurements.

1

In an ideal situation, the measurements c = c0 are error-free, so that the cost function reaches its
global minimum at J(x0, c0). However, when the measurements c = c0 + δc are corrupted with
additive noise δc, the global minimum moves to the new position

x̄ = x0 + δx , (2)

where δx is an error term applied to the error-free minimum x0. Provided the covariance matrix
Σc of the measurement error δc, EPT predicts the covariance Σx of the estimation error x. An
highlight of the input and outputs of EPT is illustrated in Figure 1.

EPT

J(x, c)

Σc

Σx

Figure 1: Input and outputs of EPT.

2.1 Using the toolbox

The toolbox provides the following set of Matlabr functions:

• EPT install.p,

• EPT problem.p,

• EPT COV.p.

We now see in details how to use them, following a step-by-step approach based on the template
available in the folder EPT template of the toolbox.

2.1.1 Installation

First of all, the toolbox needs to be installed. This is done trough the function EPT install.p,
which asks for temporary or permanent installation on the computer.

2.1.2 Definition of a cost function

We now give an algorithmic guideline for the definition of an arbitrary cost function compliant
with EPT. The toolbox provides a template for defining a cost function, available in the file
EPT template/my cost function.m. For a fully comprehension the reader is suggested to consider
the examples in Section 3 as a complement to this guideline. An EPT cost function is a Matlabr

function in the form

function J_sym = my_cost_function(M,N,params)

saved into the file my cost function.m. The input arguments are

• M, corresponding to the number of variables to be estimated

• N, corresponding to the number of observations

• params, which contains eventual parameters of the cost function. Its use is completely
arbitrary: it can be a structure, a vector, a matrix, etc. It can also be empty.

2

The file begins with the definition of two sets of symbolic variables:

• x 1, x 2, ...x N , specifying the variables to be estimated;

• c 1, c 2, ...c M , specifying the observations.

This is done by means of the following code (included into the template):

% symbols for the variables to be estimated

for m=1:M

eval([’syms x_’ num2str(m)]);

end

% symbols for the observations

for n=1:N

eval([’syms c_’ num2str(n)]);

end

After these definitions, the symbolic form of the cost function is computed and stored into the
variable J sym:

J_sym = any function of:

x_1 ... x_M,

c_1 ... c_N

params

The usage of params may be more clear after reading the Section devoted to the examples.

2.1.3 Setting up a problem

We now describe how to perform an error propagation analysis with EPT. We suggest to refer
to the template script EPT template/my test.m, which implements the following sequence of
operations:

1. definition of the handle to the cost function:

cost_function_hdl = @my_cost_function;

2. definition of the set of K evaluation points:

ev_points = ... ; % [K x M] matrix

3. computation of the noise-free observations:

observations = ... ; % [N x K] matrix

4. definition of the eventual parameters of the cost function:

params = ... ; % any type of vector/matrix/structure...

5. definition of the estimation problem:

prob = EPT_problem(cost_function_hdl,ev_points,...

observations,params)

6. definition of the observation covariance matrix Σc:

3

Pc = ... ; % [N x N] matrix

7. prediction of the covariance matrix Σx of the estimated variables:

Px = EPT_cov(prob,Pc); % Px is a [M x M x K] matrix

% containing the covariance of

% the estimation for each

% of the K test points.

The function EPT problem called at step 5 returns the structure prob, which is an argument of
the function EPT cov (step 7) and contains the following fields:

FIELD DESCRIPTION

prob.J sym symbolic form of the cost function

prob.Hxx sym symbolic form of the Hessian
prob.Hxc sym (see [1] for theoretical details)

prob.Hxx numerical form of the Hessian
prob.Hxc (see [1] for theoretical details)

prob.ev points evaluation points,
prob.observations noise-free observations,
prob.params and parameters of the cost function

3 Examples

In this Section we give a description of the examples contained in the folder EPT demos of the
toolbox. The first example refers to a very simple estimation problem described in [3]; however
it can be very useful for getting familiar with EPT. The second example refers to the typical
problem of acoustic source localization. In particular we use EPT for predicting the accuracy of
the Squared Range Difference-Least Squares (SRD-LS) algorithm discussed in [4]. Finally, the last
example regards the estimation of the pose of an acoustic reflector, and refers to the optimization
problem introduced in [5].

3.1 A toy example: error propagation in estimating the phase of a

sinusoid

We now consider the estimation problem described in [3], which relies with the estimation of the
parameters of discrete signals composed of sum of sinusoids. For the sake of simplicity, we consider
a single sinusoid with unitary amplitude

c(n) = cos(ωn+ φ) + δc(n) ,

where the frequency ω ∈ [0, π] is assumed to be known, while the phase term φ ∈ [0, 2π] has to
be estimated from N observations c(n) of the signal at discrete times n = 0, . . .N − 1. The term

4

δc(n) denotes an additive noise, which corrupts the observations. As shown in [3], the estimation
is based on the solution of a linear least-squares problem:

x̂ = argmin
x

‖Hx− c‖2 , (3)

where

H =











1 0
cos[ω] sin[ω]

...
...

cos[ω(N − 1)] sin[ω(N − 1)]











, c =











c(0)
c(1)
...

c(N − 1)











.

The solution to (3) is given by

x̂ = (HTH)−1HT c , where x̂ =

[

x̂1 = cos(φ̂)

x̂2 = − sin(φ̂)

]

,

and an estimate of the phase is therefore obtained as

φ̂ = arctan

(

− x̂2

x̂1

)

.

We now discuss how we can predict the impact of the error δc = [δc(0) δc(1) . . . δc(N − 1)]T

on the estimation error δx defined as

δx =

[

x̂1 − x1

x̂2 − x2

]

with x1 = cos(φ) , x2 = − sin(φ) . (4)

To this end, we refer to the files included in the folder EPT demos/phase estimation. We first
consider the file phase estimation cost function.m, which implements the cost function defined
in the problem (3), i.e. J(x, c) = ‖Hx− c‖2, as reported below:

function J_sym = phase_estimation_cost_function(M,N,params)

% Symbols for the variables to be estimated

for m=1:M

eval([’syms x_’ num2str(m)]);

end

% Symbols for the observations

for n=1:N

eval([’syms c_’ num2str(n)]);

end

% Read the function parameters

omega = params(1); % the frequency in the range [0,pi]

% Cost function

J_sym =0;

for n = 1:N

temp = cos(omega*(n-1))*x_1 + sin(omega*(n-1))*x_2...

- eval([’c_’,num2str(n)]);

J_sym = J_sym + temp^2;

end

The problem is then defined in the file test phase estimation.m, which also implements a com-
parison between the result predicted by EPT and results from Monte-Carlo simulations. The first
part of that file reflects the structure of the template:

5

1. first of all, it defines the handle to the cost function:

cost_function_hdl = @phase_estimation_cost_function;

2. then, it defines the evaluation points, i.e. a vector containing a set of phase values to be
tested. Since in this formulation the phase is estimated as two components (see eq.(4)), the
number of unknowns is posed to M = 2 and therefore the evaluation points are stored into
a K × 2 matrix:

K = 100;

phi = linspace(0,2*pi,K)’;

ev_points = [cos(phi) -sin(phi)];

3. after that, the noise-free observations are calculated:

N = 6; % number of observations

omega = pi/4; % frequency

observations = zeros(N,K);

for n = 1:N

for k = 1:K

observations(n,k) = cos(omega*(n-1)+phi(k));

end

4. in this case, the only parameter of the cost function is the frequency:

params = omega;

5. the estimation problem is defined calling:

prob = EPT_problem(cost_function_hdl, ev_points,...

observations, params);

6. before predicting the propagation of the error, we need to define the covariance matrix of
the observations. Assuming a Gaussian noise whose components are independent on each
observation, the covariance matrix is diagonal:

var_noise = 0.001; % noise variance

Pc = var_noise * eye(N); % [N x N] matrix

7. finally, EPT is used for calculating the covariance of the estimation variables:

Px = EPT_cov(prob,Pc);

From the covariance Σx of the estimated variable x̂ it is possible to estimate the variance σ2
φ of φ̂

adopting the simple transformation1

σ2
φ = TΣxT

T , with T =
[

x2

x2

1
+x2

2

− x1

x2

1
+x2

2

]

. (5)

1Given the set of variables x = [x1, . . . xM]T , and a further set defined as functions of x, i.e. y =
[g1(x), . . . gL(x)]

T , the covariance matrix Σy of y can be approximated as [6]

Σy = TΣxT
T , T =











∂g1(x)
∂x1

. . .
∂g1(x)
∂xM

...
. . .

...
∂gL(x)
∂x1

. . .
∂gL(x)
∂xM











,

where Σx is the covariance matrix of x.

6

This is implemented in the following code, which computes the standard deviation σφ =
√

σ2
φ:

EPT_std_phi = zeros(K,1);

for k = 1:K

x1 = cos(phi(k));

x2 = -sin(phi(k));

T = [x2/(x1^2 + x2^2) -x1/(x1^2 + x2^2)];

EPT_std_phi(k) = sqrt(T*Px(:,:,k)*T’);

end

Finally, the script performs a set of Monte-Carlo simulations, whose results are compared with
the theoretical ones. An example is shown in Figure 2, where the simulation were performed
considering N = 6 observations of a sinusoidal signal at frequency ω = π/4, with phase assuming
K = 100 values in the range φ ∈ [0, 2π]. The observations are corrupted with 1000 realizations of
a zero-mean white noise with variance σ2

c = 0.001.

0 90 180 270 360

0.95

1

1.05

1.1

1.15

1.2

1.25

φ [deg]

σ
φ
 [

d
e
g
]

Standard deviation of estimation error

Theoretical

Simulated

Figure 2: Standard deviation of the estimation: comparison between the theoretical value and the one computed
from simulations.

3.2 Error propagation for a source localization problem

We now show how to apply EPT to a source localization problem. At this purpose we refer to
[4], where the authors deal with the problem of localizing an acoustic source given a set of range-
differences of arrival observations at pairs of microphones. In particular they provide a procedure
for efficiently estimating the source location based on the Squared Range Difference-Least Squares
cost function.

Let us consider an array of N+1 sensors placed at ai, i = 0, ..., N . The first sensor is placed at
the origin (a0 = 0). The acoustic source to be localized is placed at x (Figure 3). The noise-free
range-differences between sensor i and sensor 0 are given by

c0,i = ‖x− ai‖ − ‖x‖ i = 1, ..., N. (6)

However the range-differences observations are assumed to be corrupted by a noise term so that
they can be written as

ci = c0,i + δci , i = 1, . . .N, (7)

7

x

y x

a0

a1

aN

c1

cN

Figure 3: Setup for a source localization problem. The source is represented by x, microphones are represented by
ai, and the range differences of arrival are denoted by ci.

where δci accounts for the noise. It can be shown that a solution to the problem of estimating x
given the sensors locations ai and the set of noisy range-differences ci is given by

x̂ = argmin
x

J(x, c), (8)

where the cost function is defined as

J(x, c) =
N
∑

i=1

(

−2aTi x− 2ci‖x‖ − c2i − ‖ai‖2
)2

, (9)

and
c = [c1 c2 . . . cN]T . (10)

As a matter of fact, because of the noise on the observations, the value of x̂ will be different
from the real source position x. Using EPT, the knowledge of the covariance matrix Σc of the
measurements error makes possible to compute the covariance matrix Σx of the estimation error
without the need of heavy time-demanding techniques such as Monte-Carlo simulations.

For a tutorial purpose, we now give a brief overview of the code contained in the folder
EPT demos/source localization. The first file we consider is SRDLS cost function.m, which
implements the cost function J(x, c) shown in eq.(9) as reported below:

function J_sym = SRDLS_cost_function(M,N,params)

% Symbols for the variables to be estimated

% the variabales to be estimated are the 2 coordinates

% of the source position [x_1, x_2].

for m=1:M

eval([’syms x_’ num2str(m)]);

end

% Symbols for the observations

% the observations are the N noisy range-differences

% [c_1, ..., c_N] measured at microphones pairs.

for n=1:N

eval([’syms c_’ num2str(n)]);

end

% Read the function parameters

% params contains the microphones coordinates as:

% params = [xm_1 ym_1;

8

% xm_2 ym_2;

% ;

% xm_N+1 ym_N+1].

mic_pos = params;

% Cost Function

J_sym = 0;

x0 = mic_pos(1,1); % reference microphone x

y0 = mic_pos(1,2); % reference microphone y

for i = 2:N+1

ax = mic_pos(i,1)-x0;

ay = mic_pos(i,2)-y0;

di = eval([’c_’ num2str(i-1)]);

gi = di^2 - (ax^2 + ay^2);

x = x_1 - x0;

y = x_2 - y0;

J_sym = J_sym + (-2*(ax*x + ay*y)-2*di*sqrt(x^2+y^2)-gi)^2;

end

The problem is then defined in the file test SRDLS.m, which also contains the code to plot some
results predicted by EPT. The first part of that file reflects the structure of the template:

1. first we define the cost function handle:

cost_function = @SRDLS_cost_function;

2. then, we define the evaluation points, i.e. a matrix containing the coordinates of the tested
source positions. Since in this formulation the source and microphones are placed on a plane,
the number of coordinates to be estimated is M = 2 and therefore the evaluation points are
stored into a K×2 matrix. In this example we place the sources on a l x×l y grid centered
at the origin (shown as crosses in Figure 4a):

% We first define the grid parameters.

l_x = 3.9; % x grid length in [m]

l_y = 3.9; % y grid length in [m]

num_x = 10; % number of sources on x

num_y = 10; % number of sources on y

% We then define the grid saving each source position

% in the matrix ev_points = [xs_1 ys_1;

%;

% xs_K ys_K];

delta_x = l_x / (num_x-1);

delta_y = l_y / (num_y-1);

num_ev = num_x*num_y;

ev_points = zeros(num_ev,2);

counter = 1;

for i = 1:num_x

for j = 1:num_y

ev_points(counter,:) = [delta_x*(i-1) - l_x/2, ...

-(-delta_y*(j-1) + l_y/2)];

counter = counter + 1;

9

end

end

3. after that, we compute the noise-free observations. They coincide with the range-differences
between the source and microphone pairs. At this purpose we also define microphones
location (shown as circles in Figure 4a):

% We define the microphones positions

mic_pos = [2 2; ...

-2 2; ...

-2 -2; ...

2 -2];

% We compute the microphone-source distances

distance = zeros(size(mic_pos,1),size(ev_points,1));

for n = 1:size(mic_pos,1),

for k = 1:size(ev_points,1),

distance(n,k) = norm(mic_pos(n,:)-ev_points(k,:));

end

end

% We compute the range differences

observations = zeros(size(mic_pos,1),size(ev_points,1));

for n = 1:size(mic_pos,1)

for k = 1:size(ev_points,1)

observations(n,k) = -(distance(1,k)-distance(n,k));

end

end

observations = observations(2:end,:);

4. we now define the parameters. For this problem, the only parameters we use are the micro-
phones positions:

params = mic_pos;

5. the estimation problem is now defined calling:

prob = EPT_problem(cost_function, ev_points, ...

observations, params);

6. in order to predict the propagation of the error, we need to define the covariance matrix of
the observations. Assuming a Gaussian noise whose components are independent on each
observation, the covariance matrix is diagonal:

var_noise = 0.03^2; % noise variance

Pc = var_noise * eye(size(observations,1)); % [N x N] matrix

7. finally, EPT is used for calculating the covariance of the estimation variables:

Px = EPT_cov(prob,Pc);

Once we have computed the estimation error covariance matrix Σx (Px in the code), we can extract
the RMSE for each source location. The RMSE for the x and y coordinates of each source position
is obtained by computing the square-root of the diagonal element of Σx as:

10

RMSE = zeros(size(Px,3),size(Px,1));

for m = 1:size(Px,1)

for k = 1:size(Px,3)

RMSE(k,m) = sqrt(Px(m,m,k));

end

end

In order to visualize these results, we plot the x coordinate RMSE of the source over the source
grid. In this way we have a visual feedback of the estimation error for each source position as
shown in Figure 4b.

% Plot the RMSE on x coordinate for every source position

ax_lim = [min(prob.ev_points(:,1)) max(prob.ev_points(:,1)) ...

min(prob.ev_points(:,2)) max(prob.ev_points(:,2))];

xRMSE = reshape(RMSE(:,1),num_y,num_x);

figure(),

imagesc(ax_lim(1:2),ax_lim(3:4),xRMSE);

colormap(’gray’), colorbar

set(gca,’YDir’,’normal’)

set(gca,’Fontname’,’Times new roman’,’Fontsize’,18);

title(’RMSE on x [m]’)

xlabel(’x [m]’,’interpreter’,’tex’,’fontsize’,16)

ylabel(’y [m]’,’interpreter’,’tex’,’fontsize’,16)

−2 −1 0 1 2

−2

−1

0

1

2

x [m]

y
[m

]

(a)

−2 −1 0 1 2

−2

−1

0

1

2

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x [m]

y
[m

]

RMSE on x [m]

(b)

Figure 4: (a): setup used for testing EPT . Crosses represent source positions, circles represent microphones. (b):
RMSE on the x coordinate of the source for every source position.

3.3 Error propagation for a reflector localization problem

As a final example, we discuss how to replicate the results shown in [5], relative to the problem of
estimating the position of an acoustic planar reflector from Times of Arrival measurements. The
estimation algorithm is detailed in [5]. Here we limit to report the simulation setup and discuss
some implementation issues.

We consider the scenario depicted in Figure 5. A microphone array is composed of N = 5

11

x1

x2

x3

x4

x5

ρ

α

lr

s x

y

30 cm

Figure 5: Simulation setup for the problem of reflector localization.

sensors uniformly spaced on a circumference with radius 30 cm, at positions x1, . . .x5. The line
lr = [l1r , l2r , l3r]

T of equation l1rx + l2ry + l3r = 0 models a planar reflector perpendicular to
the plane of the microphones and passing through that line. An acoustic source is placed at s,
whose location coincides with the origin of the reference frame. As discussed in [5], the goal is
to estimate the reflector line parameters from the knowledge of the length of the reflected paths
between the source and the microphones. In mathematical terms, this problem is formulated as
the minimization of a cost function that collects N = 5 homogeneous elliptic constraints [5]:

J(l, c) =

N
∑

n=1

(

lTC∗

nl
)2

,

where c = [c1, . . . cN]T are the length of the reflective paths; and C∗

n is the dual-conic matrix
representing the nth elliptic constraint (see [5] for details). The reflector line is finally estimated
as [5]

l̂ = argmin
l

J(l, c)|l3=1 , (11)

where l̂ = [l̂1r , l̂2r , 1]
T . Notice that, in order to avoid the redundancy determined by the homoge-

neous coordinates2, the problem (11) forces the third line parameter to be l3 = 1.
We now discuss how to define this problem using EPT. We start with the definition of the cost

function. In particular, the number of unknowns is M = 2, corresponding to the pair (l1, l2). The
observations correspond to the vector c = [c1, . . . cN]T , which includes the length of the N = 5
reflective paths. The microphone positions are passed as parameters to the cost function, as it
can be noticed in the code listed below:

function J_sym = ref_loc_cost_function(M,N,params)

% Symbols for the variables to be estimated

for m=1:M

eval([’syms x_’ num2str(m)]);

end

% Symbols for the observations

for n=1:N

eval([’syms c_’ num2str(n)]);

end

% Cost function

J_sym = 0;

2The line parameter vector l is homogeneous. This means that all the vectors λl, λ 6= 0, represent the same
line. Posing l3 = 1 corresponds to fixing the value of λ.

12

for n = 1:N

% microphone positions (read from ’params’)

xm = params.mic_pos(n,1); % current x coordinate

ym = params.mic_pos(n,2); % current y coordinate

% reflective TOA (corresponding to the observation c_n)

t = eval([’c_’ num2str(n)]);

% compute the dual ellipse parameters

a = -4*t^2*(- t^2 + xm^2 + ym^2)*(- t^2 + xm^2 + ym^2);

b = 0;

c = a;

f = -16*t^2*(- t^2 + xm^2 + ym^2);

d = f*xm;

e = f*ym;

% construct the dual ellipse matrix

CS = [a b/2 d/2;b/2 c e/2;d/2 e/2 f];

% update the cost function

temp = ([x_1 x_2 1]*CS*[x_1;x_2;1])^2;

J_sym = J_sym + simplify(temp); % simplify speeds up the computation

% at the next steps

end

After the definition of the cost function, the problem is defined, as usual, by the code:

%% 1. definition of the cost function handle

cost_function_hdl = @ref_loc_cost_function;

%% 2. definition of the set of evaluation points

% We define a grid of test reflector lines defined by their

% distance ’rho’ and orientation ’alpha’ with respect to the origin

%--

num_o = 9; % number of orientations

num_d = 10; % number of distances

K = num_o*num_d; % total number of test reflector positions

or_ax = linspace(0,2*pi,num_o); % the orientation ranges...

% ...from 0 to 2*pi

min_d = 1;

max_d = 4;

dist_ax = linspace(min_d,max_d,num_d); % the distance ranges...

% ...from ’min_d’ to ’max_d’

% grid definition

[grid_o,grid_d] = meshgrid(or_ax,dist_ax);

13

pts = [grid_o(:) grid_d(:)];

% conversion of the reflector lines in cartesian form, i.e. in the

% parameter vector [l_1 l_2 l_3] defining the line of equation

% l_1x + l_2y + l_3 = 0.

% Notice that we force l_3 = 1, since we no test reflector lines pass

% trough the origin.

ref_line = zeros(K,3);

for k=1:K

rho = pts(k,2);

alpha = pts(k,1);

ref_line(k,:) = [cos(alpha) sin(alpha) -rho];

ref_line(k,:) = ref_line(k,:)/ref_line(k,3); % force l3 = 1

end

% We now define the evaluation points. The variables to be estimated

% are l_1 and l_2, thus M = 2

ev_points = ref_line(:,1:2); % a [K x 2] matrix

%% 3. definition of the observations

% The theoretical observations are the euclidean distances between the

% microphones and the mirror source generated by the real one

% ---

% source position

src_pos = [0 0]; % the source is in (0,0);

% microphone positions (N sensors on a circle):

N = 5; % number of microphones

angs = linspace(0,2*pi,N+1)’;

angs = angs(1:end-1);

r = 0.3;

mic_pos = r*[cos(angs) sin(angs)]; % mic. positions

% calculate the noise-free reflective distances

observations = zeros(N,K);

for k = 1:K

% mirror source position

l1 = ev_points(k,1);

l2 = ev_points(k,2);

xs = src_pos(1);

ys = src_pos(2);

xr = -(l1^2*xs+2*l1+2*l1*l2*ys-l2^2*xs)/(l1^2 + l2^2);

yr = (l1^2*ys-2*l1*l2*xs-2*l2-l2^2*ys)/(l1^2 + l2^2);

mir_src = [xr yr];

14

% length of the reflective paths

for n = 1:N

observations(n,k) = norm(mir_src-mic_pos(n,:));

end

end

%% 4. definition of params

% embed the microphone positions in params:

params.mic_pos = mic_pos;

%% 5 .definition of the estimation problem

prob = EPT_problem(cost_function_hdl, ev_points, observations, params);

%% 6. definition of the observation covariance

sig = 0.01; % standard deviation of distance error

Pc = sig^2*eye(N); % diagonal matrix

%% 7. prediction of the covariance matrix

Px = EPT_cov(prob,Pc);

Although the comments inserted in the code should be sufficient for its comprehension, it may be
helpful to discuss some implementation choices:

• definition of the evaluation points (step 2): in order to give a physical interpretation
to the reflector position, the reflector lines are expressed in polar coordinates, i.e. in term of
their distance ρ and orientation α with respect to the origin (see Figure 5). The evaluation
points are then converted into the Cartesian representation using the relationship







l1 = cosα
l2 = sinα
l3 = −ρ

; (12)

• definition of the observations (step 3): the observations correspond to the length of
the N reflective paths. Their values are computed as the distance between the microphones
and the mirror source position, obtained as the specular reflection of the real source over
each reflector line.

The remainder of the code simply rearranges and plots the results:

% Convert the results from cartesian paramaters

% to polar (distance/orientation) parameters

Pp = zeros(2,2,K); % covariance matrices of the estimated

% polar parameters

P_std_dev = zeros(2,K); % standard deviation of the

15

% estimated polar parameters

% Compute covariance and standard deviation

for k = 1:K

l1 = ev_points(k,1);

l2 = ev_points(k,2);

l3 = 1;

nr2 = l1^2 + l2^2;

T = [-l1/(nr2^(3/2)), -l2/(nr2^(3/2));...

-l2/nr2 , l1/nr2];

Pp(:,:,k) = T*Px(:,:,k)*T’; % covariance matrix

P_std_dev(1,k) = sqrt(Pp(1,1,k)); % standard deviation

P_std_dev(2,k) = sqrt(Pp(2,2,k));

end

% Plot results (standard deviation)

std_o = reshape(P_std_dev(1,:),num_o,num_d);

std_d = reshape(P_std_dev(2,:),num_o,num_d);

hfig = figure;

set(hfig,’Units’, ’Normalized’, ’OuterPosition’, [0 0 1 1]);

subplot(1,2,1);

colormap(’gray’);

imagesc([min_d max_d],[0 360],std_o*180/pi);colorbar;

xlabel(’Distance [m]’,’interpreter’,’tex’,’fontsize’,15);

ylabel(’Orientation [deg]’,’interpreter’,’tex’,’fontsize’,15);

set(gca,’xtick’,[1 2 3 4]);

set(gca,’ytick’,[0 90 180 270 360]);

set(gca,’fontname’,’times new roman’,’fontsize’,15)

title(’Std. dev. of orientation error [deg]’,’interpreter’,’tex’,’fontsize’,15);

axis xy; axis square

subplot(1,2,2);

colormap(’gray’);

imagesc([min_d max_d],[0 360],std_d);colorbar;

xlabel(’Distance [m]’,’interpreter’,’tex’,’fontsize’,15);

ylabel(’Orientation [deg]’,’interpreter’,’tex’,’fontsize’,15);

set(gca,’xtick’,[1 2 3 4]);

set(gca,’ytick’,[0 90 180 270 360]);

set(gca,’fontname’,’times new roman’,’fontsize’,15)

title(’Std. dev. of distance error [m]’,’interpreter’,’tex’,’fontsize’,15);

axis xy; axis square

In particular, it is important to notice that:

• in order to bring back to the polar representation (i.e., from the Cartesian coordinates (l1, l2)
to the polar pair (ρ, α)), we need to invert eq.(12). First, we force l3 = 1 by dividing all the

16

terms by −ρ, so that






l1 = − 1
ρ
cosα

l2 = − 1
ρ
sinα

l3 = 1

.

Consequently, we obtain






ρ = 1√
l2
1
+l2

2

α = arctan
(

l2
l1

) . (13)

• the covariance matrix of the estimation Σl (denoted with Px in the code) is converted into
the covariance Σρ,α relative to the polar representation of the estimated variables:

Σρ,α = TΣlT
T , T =







−l1

(l2
1
+l2

2
)
3

2

−l2

(l2
1
+l2

2
)
3

2

−l2
l2
1
+l2

2

l1
l2
1
+l2

2






. (14)

Figure 6 shows the result produced by the example discussed above. In particular, it implements
the scenario in Figure 11, where the reflector are selected from a grid of 90 test reflector lines.
The standard deviation of the measurement error is 1 cm.

Figure 6: Error propagation analysis relative to the reflector localization.

As a final remark, notice that the results reported in [5] can be replicated using a larger grid
of test reflectors on the same setup, posing num o=90 and num d=100 at step 2 of the problem
definition.

17

References

[1] M. Compagnoni, P. Bestagini, F. Antonacci, A. Sarti, and S. Tubaro, “Localization of acoustic
sources through the fitting of propagation cones using multiple independent arrays,” Audio,

Speech, and Language Processing, IEEE Transactions on, vol. 20, no. 7, pp. 1964 –1975, sept.
2012.

[2] R. Gilmore, Catastrophe theory for scientists and engineers. Dover Publications, Inc., 1993,
reprint of the 1981 original.

[3] H.-C. So, “On linear least squares approach for phase estimation of real sinusoidal signals,”
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E88-A, pp. 3654–3657,
December 2005. [Online]. Available: http://dx.doi.org/10.1093/ietfec/e88-a.12.3654

[4] A. Beck, P. Stoica, and J. Li, “Exact and approximate solutions of source localization prob-
lems,” Signal Processing, IEEE Transactions on, vol. 56, no. 5, pp. 1770 –1778, May 2008.

[5] A. Canclini, F. Antonacci, M. R. P. Thomas, J. Filos, A. Sarti, P. A. Naylor, and S. Tubaro,
“Exact localization of acoustic reflectors from quadratic constraints,” in Applications of Signal

Processing to Audio and Acoustics, 2011. WASPAA ’11. IEEE Workshop on, oct. 2011.

[6] B. Ochoa and S. Belongie, “Covariance propagation for guided matching.”

18

http://dx.doi.org/10.1093/ietfec/e88-a.12.3654

	Introduction
	Error propagation analysis using EPT
	Using the toolbox
	Installation
	Definition of a cost function
	Setting up a problem

	Examples
	A toy example: error propagation in estimating the phase of a sinusoid
	Error propagation for a source localization problem
	Error propagation for a reflector localization problem

