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Range–based Localization

Problem: find the position of a point x from the range
measurements between x and a set of given points
mi, i = 1, . . . , n.

Examples of applications:

• radar and active sonar

• molecular conformation

• wireless sensor networks
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The Range Model
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di(x) = x−mi di (x) = ‖di(x)‖
dji = mj −mi dji = ‖dji‖

Tr ,n : Rr −→ Rn

x 7−→ (d1(x) , . . . , dn(x))

d̂i (x) = measured range
εi = measurement error

⇒

d̂i (x) = di (x) + εi

The model: T̂r ,n(x) = (d̂1(x), . . . , d̂n(x)) ∼ N(T (x),Σ)

• Deterministic problem: if εi = 0, find the conditions for
existence and uniqueness of x (the identifiability problem).

• Statistical problem: if εi 6= 0, efficiently estimate x.
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Euclidean Distance Geometry
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The deterministic problem is a
main topic of Euclidean Dis-
tance Geometry (DG) [Liberti

and others, 2014].

Given a weighted graph G =
(V ,E ,W ), with

• V the points mi and x

• E the available distances

• W the measured ranges

is G embeddable into some k-
dimensional Euclidean space?

In DG the answer is usually given in terms of Cayley–Menger
determinant.
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The set of feasible ranges
Hypothesis:
• a point x ∈ R2, thus r = 2;
• three known points m1,m2,m3 ∈ R2, thus n = 3.

T = (T1, T2, T3) ∈ Im(T2,3) if and only if
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= 0, T1, T2, T3 ≥ 0.

Proposition: the set of feasible ranges is the semialgebraic
surface X ⊂ R3 defined by
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The Kummer’s surface I
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• X̄ is a quartic surface with 16 nodes, thus X̄ is a Kummer’s
surface. The nodes on X are the images of m1,m2,m3.

• There exist 16 conics on X̄ . The conics on X are the images
of r±i and Γi , i = 1, 2, 3. They are asymptotic curves of X
and divide the positive and negative curvature regions of X .
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The Kummer’s surface II

• There exist 16 planes (the tropes), each one tangent to X̄
along one conic. The 12 tropes tangent to X come from the
triangular inequalities plus some other geometrical arguments
and they define a convex polyhedron Q3 containing X .

• The boundary of the convex hull of X is the union of the
positive curvature regions of X and slices of each facet of Q3.



Geometry of
range–based
localization

Marco
Compagnoni

The Range
Model

The
Kummer’s

The
estimation
problem

Conclusions
and
Perspectives

Extra

Pseudorange–based localization
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• In some applications only the range differences or pseudoranges
are available: τ1(x) = d1(x)− d3(x), τ2(x) = d2(x)− d3(x)
[Compagnoni and others, 2013].

• The set of feasible pseudoranges is the projection π(X ) of X from
its ideal singular point, where π(T1, T2, T3) = (T1 − T3, T2 − T3).
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Near and Far Field

In several applications one distinguishes between near and far
field scenarios (e.g. distributed sensors versus compact arrays).

• Near Field: the point x is closed to (at least one)
mi, i = 1, 2, 3. The range model is singular.

• Far Field: the point x is far away from mi, i = 1, 2, 3. A
good approximation of the Kummer’s surface is given by the
tangent cone to the ideal singular point of X , i.e. the
elliptic cylinder C having equation

d2
32T 2

1 + d2
31T 2

2 + d2
21T 2

3 −
−2d31·d32T1T2+2d21·d32T1T3−2d21·d31T2T3−‖d31∧d32‖2 = 0.
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Far Field estimation

Maximum Likelihood Estimation (MLE):

T = argmin
T ∈X

‖T̂ − T ‖2

• asymptotically efficient estimator;
• nonconvex optimization;
• X has Euclidean Distance degree 20.

Squared–Range–based Least Square (SR–LS):
[Beck,Stoica,Li 2008]

T = argmin
T ∈X

‖T̂ 2 − T 2‖2

• it is not first order efficient;
• although nonconvex, there exist efficient solution methods;
• it is equivalent to MLE with respect to Cayley–Menger variety,

an elliptic paraboloid with Euclidean Distance degree 5.
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SR-LS performance

Scenario:
m1=(−

√
3

2
,− 1
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), m2=(
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2
), m3=(0,1)

T̂ (x)∼N(T (x),σ2 I), σ=0.1

Asymptotic Inference:

• the inverse G (x) of the
Fisher matrix gives the
asymptotic mean square
error of the MLE;

• by Cramér-Rao inequality,
the asymptotic mean square
error Ḡ (x) of any consistent
and unbiased estimator
satisfies Ḡ (x)− G (x) � 0.

Proposition: Ḡ (x)− G (x) has only a non–zero eigenvalue λ(x).
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Orthogonal projection on C

T̂
T

T ∗

Algorithm (OPC):

• find the nearest point
T ∗ ∈ C to T̂ ;

• find the line LT̂ containing

T̂ ,T ∗;
• the estimate T is the

intersection of LT̂ and X

closest to T̂ .

• OPC is a consistent estimator;

• the orthogonal projection on C is a two dimensional problem
with Euclidean Distance degree 4, then to find LT̂ ∩ X we
have to solve a degree 4 polynomial equation;

• in far field regime we expect to have existence and uniqueness
of the solution of OPC (at least in a local setting).
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OPC performance

Scenario:
m1=(−

√
3

2
,− 1

2
), m2=(

√
3
2
,− 1

2
), m3=(0,1)

T̂ (x)∼N(T (x),σ2 I), σ=0.1

Results:

• OPC performs better than
SR-LS in far field regime,
while it is not suitable for
near field localization;

• OPC has a lower algebraic
computational complexity
with respect to MLE;

• similar results have been
obtained for more general
sensor configurations and in
the analysis of the bias.
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Conclusions and Perspectives

In our work:

• we studied the range-based localization problem with two and
three sensors in terms of real algebraic geometry;

• we have characterized the measurements space using classical
results on Kummer’s surfaces;

• we began the study of the estimation problem.

In future works we will:

• complete the analysis of near and far field estimation
(singular model, second order efficient estimators
[Kobayashi,Wynn 2013]);

• extend our analysis to the cases with n > 3 sensors.
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Aligned sensors
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SR-LS versus OPC
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