Marco Compagnoni

Introduction

The TDO/ Map

The Multilinea Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketches about τ_3

Conclusions and Perspectives

Extra

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The Geometry of the TDOA–based Source Localization

Marco Compagnoni

SIAM Conference on Applied Algebraic Geometry Fort Collins August 3, 2013

Marco Compagnoni

Introduction

The TDO/ Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusions and Perspectives

Extra

Joint work with Roberto Notari, Fabio Antonacci, Augusto Sarti.

イロト 不得 トイヨト イヨト

э.

Marco Compagnoni

Introduction

The TDOA Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusions and Perspectives

Extra

2D TDOA-based Localization

Problem: point-like (acoustic) source localization based on the time differences of arrival (TDOA) of a signal to distinct receivers lying on a plane.

Experimental data:

the TDOAs τ_{ji} of the signal to receivers \mathbf{m}_{j} and \mathbf{m}_{i} , measured as the time shifts of the signal wavefront.

Goal: obtain a complete description of the statistical model behind TDOA-based source localization, possibly with unsynchronized and uncalibrated receivers.

Marco Compagnoni

Introduction

The TDO Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketches about τ_3

Conclusion and Perspective

Extra

The Geometric Propagation Model

 $\begin{aligned} \mathbf{d_i}(\mathbf{x}) &= \mathbf{x} - \mathbf{m_i} \quad d_i(\mathbf{x}) = \|\mathbf{d_i}(\mathbf{x})\| \\ \mathbf{d_{ji}} &= \mathbf{m_j} - \mathbf{m_i} \quad d_{ji} = \|\mathbf{d_{ji}}\| \\ \hat{\tau}_{ji} &= \text{measured TDOA} \\ \epsilon_{ji} &= \text{measurement error} \\ \text{Propagation speed equal to 1.} \end{aligned}$

 $au_{ji}(\mathbf{x}) = d_j(\mathbf{x}) - d_i(\mathbf{x})$ $\hat{ au}_{ji} = au_{ij}(\mathbf{x}) + \epsilon_{ji}$

 $\tau_{ij}(\mathbf{x}) = \hat{\tau}_{ji}$ is an hyperbola branch with foci $\mathbf{m}_i, \mathbf{m}_j \Rightarrow$ the source is at the branches intersection.

- **Deterministic problem:** if $\epsilon_{ji} = 0$, conditions for existence and uniqueness of the localization (the identifiability problem).
- Statistical problem: if ε_{ji} ≠ 0, characterize the non linear (and non algebraic) model.

Marco Compagnoni

Introduction

The TDO Map

The Multilinea Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketches about τ_3

Conclusions and Perspectives

Extra

The GPS Problem

In the classical GPS problem one searches the location of a source in space using the **times of arrival** t_i of signals (TOAs) from *n* distinct satellites to the GPS receiver.

The TOA Model: $t_i(\mathbf{x}) = d_i(\mathbf{x}) + \epsilon_i + b$

- Because of the low accuracy of the receiver clock, one has to consider an additional bias *b* for each TOA.
- In order to eliminate b, one chooses a reference satellite m₁ and takes as input data the differences t_i(x) - t₁(x).

In the deterministic case the GPS problem reduces to the TDOA-based localization.

- Existence problem: how many satellites are necessary to locate a source?
- Uniqueness or Bifurcation problem: in which cases is the localization unique?

Marco Compagnoni

The TDOA Map

Hypothesis:

- a source $\mathbf{x} \in \mathbb{R}^2$:
- n+1 synchronized and calibrated receivers $\mathbf{m}_0, \ldots, \mathbf{m}_n \in \mathbb{R}^2$;
- noiseless scenario, i.e. $\epsilon_{ii} = 0$.

 $\tau_{ii}(\mathbf{x}) = \tau_{i0}(\mathbf{x}) - \tau_{i0}(\mathbf{x}) \Rightarrow n \text{ independent } \tau_{i0}(\mathbf{x}), i = 1, \dots, n.$

 $\boldsymbol{\tau}_n: \mathbb{R}^2 \longrightarrow$ The TDOA $\mathbf{x} \mapsto (\tau_{10}(\mathbf{x}), \ldots, \tau_{n0}(\mathbf{x}))$ map

Given a measurements array $\boldsymbol{\tau} := (\tau_1, \ldots, \tau_n) \in \mathbb{R}^n$, we have:

- Existence of localization if, and only if, $\tau \in Im(\tau_n)$, so the reduced set of noiseless measurements is $Im(\tau_n)$.
- Uniqueness of localization if, and only if, $|\tau_n^{-1}(\tau)| = 1$.

The case n = 2 is the first one allowing the injectivity of τ_n .

The TDOA Map

The local analysis of τ_2 $\tau_{i0}(\mathbf{x}) \in \mathcal{C}^{\infty}(\mathbb{R}^2 \setminus \{\mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_2\}) \text{ and } \nabla \tau_{i0}(\mathbf{x}) = \tilde{\mathbf{d}}_i(\mathbf{x}) - \tilde{\mathbf{d}}_0(\mathbf{x}).$ $D := \bigcup_{i=0}^{2} (r_i^- \cup r_i^+)$ $A_2(\tau_2$ $A_1(\tau_1)$ The jacobian of au_2 at $\mathbf{x} \neq$ $\mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_2$ has m_1 mo $r_2^ \mathsf{rk}(J) = \begin{cases} 1 & \text{if } \mathbf{x} \in D \\ 2 & \text{otherwise} \end{cases}$ r_0^+

$${\mathcal A}_i(au):=\{{f x}\in{\mathbb R}^2|\, au_{i0}({f x})= au\}$$
, where $au\in{\mathbb R}.$

Proposition:

Assume $\mathbf{x} \in A_1(\tau_1) \cap A_2(\tau_2)$. Then, $A_1(\tau_1), A_2(\tau_2)$ meet transversally at \mathbf{x} if, and only if, $\mathbf{x} \in \mathbb{R}^2 \setminus D$.

Geometry of TDOAbased Source Localization

Marco Compagnoni

Introduction

The TDOA Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about **7**3

Conclusions and Perspective

Extra

Marco Compagnoni

Introduction

The TDOA Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusion and Perspective

Extra

The Algebraic Global Analysis Let $\tau = (\tau_1, \tau_2)$, we denote $A_i(\tau) := A_i(\tau_i)$. We have $\tau \in Im(\tau_2)$ if, and only if, $A_1(\tau) \cap A_2(\tau) \neq \emptyset$.

2D algebraic approach:

- Intersection of the two hyperbolas containing $A_1(\tau), A_2(\tau)$.
- Problems: extra intersections, complex intersections.

Marco Compagnoni

Introduction

The TDOA Map

- The Multilinea Algebra Solution
- The Image of τ_2 and the Bifurcation Problem
- The complete TDOA map and sketche about τ_3
- Conclusions and Perspectives

Extra

The Algebraic Global Analysis

3D algebraic approach:

- Intersection of three (half-)cones.
- Partially linear: the problem is equivalent to the intersection of a (half-)cone and two planes.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• No misleading solutions.

Marco Compagnoni

Introduction

The TDOA Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusions and Perspectives

Extra

Notation:

$$\mathbf{X} = (\mathbf{x}, au)$$

 $\mathbf{M}_{\mathbf{i}}(\mathbf{ au}) = (\mathbf{m}_{\mathbf{i}}, au_{i})$

$$egin{aligned} \mathsf{D}_{\mathsf{i}}(\mathsf{X}, au) &= \mathsf{X} - \mathsf{M}_{\mathsf{i}}(au) \ \mathsf{D}_{\mathsf{j}\mathsf{i}}(au) &= \mathsf{M}_{\mathsf{j}}(au) - \mathsf{M}_{\mathsf{i}}(au) \end{aligned}$$

The 3D Minkowski Space

The cones intersection:

 $\begin{cases} \|\mathbf{D}_{\mathbf{0}}(\mathbf{X},\tau)\|^{2} = 0 \\ \|\mathbf{D}_{\mathbf{i}}(\mathbf{X},\tau)\|^{2} = 0 \end{cases} \Rightarrow \begin{cases} \|\mathbf{D}_{\mathbf{0}}(\mathbf{X},\tau)\|^{2} = 0 \\ \langle \mathbf{D}_{\mathbf{i}0}(\tau), \mathbf{D}_{\mathbf{0}}(\mathbf{X},\tau) \rangle = \frac{1}{2} \| \mathbf{D}_{\mathbf{i}0}(\tau) \|^{2} \end{cases}$

Let us define:

- $C_0(\tau) = \{ \mathbf{X} \in \mathbb{R}^{2,1} \mid \| \mathbf{D_0}(\mathbf{X}, \tau) \|^2 = 0 \};$
- $C_0(\tau)^- = \{ \mathbf{X} \in C_0(\tau) \mid \langle \mathbf{D}_0(\mathbf{X}, \tau), \mathbf{e}_3 \rangle \ge 0 \}.$
- $\Pi_i(\tau) = \{ \mathbf{X} \in \mathbb{R}^{2,1} \mid \langle \mathsf{D}_{i0}(\tau), \mathsf{D}_0(\mathbf{X}, \tau) \rangle = \frac{1}{2} \parallel \mathsf{D}_{i0}(\tau) \parallel^2 \}$

Theorem

Let $\pi : \mathbb{R}^{2,1} \to \mathbb{R}^2$ be the projection onto the **x**-plane. Then $\pi(C_0^- \cap \Pi_i(\tau)) = \begin{cases} A_i(\tau) & \text{if } \tau_i \neq -d_{i0} \\ A_i(\tau) \cup r_j^0 & \text{if } \tau_i = -d_{i0} \end{cases}$ with $i \neq j$.

Marco Compagnoni

Introduction

The TDOA Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusions and Perspectives

Extra

The Source Solution

Linear problem: $L(\tau) = \Pi_1(\tau) \cap \Pi_2(\tau)$ is a line for each $\tau \in \mathbb{R}^2$, containing the point $L_0(\tau)$ and parallel to $\mathbf{v}(\tau)$

$$\mathsf{D}_0(\mathsf{L}_0(\tau)) = -\frac{*\left(\left(\|\mathsf{D}_{10}(\tau)\|^2 \mathsf{d}_{20} - \|\mathsf{D}_{20}(\tau)\|^2 \mathsf{d}_{10}\right) \wedge \mathsf{e}_3\right)}{2\|\mathsf{d}_{10} \wedge \mathsf{d}_{20}\|}$$

$$\mathsf{v}(\tau) = *(\mathsf{D}_{10}(\tau) \land \mathsf{D}_{20}(\tau)) = *((\mathsf{d}_{10} \land \mathsf{d}_{20}) + (\tau_2 \mathsf{d}_{10} - \tau_1 \mathsf{d}_{20}) \land \mathsf{e}_3).$$

Quadratic problem: $A_1(\tau) \cap A_2(\tau) \subseteq \pi(C_0^- \cap L(\tau))$. Hence, we study $\|\mathbf{D}_0(\mathbf{L}_0(\tau)) + \lambda \mathbf{v}(\tau)\|^2 = 0$, or, explicitly,

$$\|\mathbf{v}(\boldsymbol{\tau})\|^2 \lambda^2 + 2\lambda \langle \mathbf{D}_{\mathbf{0}}(\mathbf{L}_{\mathbf{0}}(\boldsymbol{\tau})), \mathbf{v}(\boldsymbol{\tau}) \rangle + \|\mathbf{D}_{\mathbf{0}}(\mathbf{L}_{\mathbf{0}}(\boldsymbol{\tau}))\|^2 = 0.$$

This equation in $\lambda \in \mathbb{R}$ has degree at most 2, with coefficients depending on τ .

Marco Compagnoni

Introduction

The TDO Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusions and Perspectives

Extra

The Source Solution Analysis

By setting:

•
$$a(\tau) = \|\mathbf{v}(\tau)\|^2 = \|\tau_2 \mathbf{d_{10}} - \tau_1 \mathbf{d_{20}}\|^2 - \|\mathbf{d_{10}} \wedge \mathbf{d_{20}}\|^2$$

$$b(\tau) = \langle \mathsf{D}_{0}(\mathsf{L}_{0}(\tau)), \mathsf{v}(\tau) \rangle = \\ = \frac{\langle \tau_{2} \mathsf{d}_{10} - \tau_{1} \mathsf{d}_{20}, \|\mathsf{D}_{20}(\tau)\|^{2} \mathsf{d}_{10} - \|\mathsf{D}_{10}(\tau)\|^{2} \mathsf{d}_{20} \rangle}{2\|\mathsf{d}_{10} \wedge \mathsf{d}_{20}\|}$$

•
$$c(\tau) = \|\mathbf{D}_0(\mathbf{L}_0(\tau))\|^2 = \frac{\|\|\mathbf{D}_{10}(\tau)\|^2 \mathbf{d}_{20} - \|\mathbf{D}_{20}(\tau)\|^2 \mathbf{d}_{10}\|^2}{4\|\mathbf{d}_{10} \wedge \mathbf{d}_{20}\|^2}$$

$$\Rightarrow \qquad a(\boldsymbol{\tau})\lambda^2 + 2b(\boldsymbol{\tau})\lambda + c(\boldsymbol{\tau}) = 0.$$

We are interested into the real negative solutions, therefore we use **Descartes' rule of signs** to characterize $Im(\tau_2)$.

The **coefficients** are polynomials with respect to τ_1, τ_2 .

Marco Compagnoni

Introduction

The TDO/ Map

The Multilinea Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketches about τ_3

Conclusions and Perspectives

Extra

The Polytope

$$-d_{10} \le \tau_1 \le d_{10} -d_{20} \le \tau_2 \le d_{20} -d_{21} \le \tau_2 - \tau_1 \le d_{21}$$

The six inequalities define a **polygon** P_2 , i.e. a two dimensional convex polytope. P_2 has **six facets** F_k^{\pm} .

$$P_2 = \{\boldsymbol{\tau} \in \mathbb{R}^2 | \| D_{ji}(\boldsymbol{\tau}) \|^2 \ge 0, \forall i, j\}$$

- $\operatorname{Im}(\tau_2) \subsetneq P_2$, in particular $\tau_2^{-1}(F_k^{\pm}) = r_k^{\pm}$ and $\tau_2^{-1}(R^k) = \mathbf{m_k}$.
- Δ(τ) = b(τ)² 4a(τ)c(τ) = 0 is a sextic algebraic curve in the τ-plane, and it factors as the six lines supporting F[±]_k.
- $\Delta > 0$ on \mathring{P}_2 .

Marco Compagnoni

Introduction

The TDO Map

The Multilinea Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusion and Perspective

Extra

The analysis of the coefficients

 $c = \frac{\left\| \|\mathbf{D}_{10}(\tau)\|^2 \mathbf{d}_{20} - \|\mathbf{D}_{20}(\tau)\|^2 \mathbf{d}_{10} \right\|^2}{4\|\mathbf{d}_{10} \wedge \mathbf{d}_{20}\|^2}$

- $c(\tau) = 0$ iff $\tau \in \{R^0, R^*, R_1^*, R_1^0\},$
- c(τ) > 0 otherwise.
- $\mathbf{a} = \|\tau_2 \mathbf{d_{10}} \tau_1 \mathbf{d_{20}}\|^2 \|\mathbf{d_{10}} \wedge \mathbf{d_{20}}\|^2$
 - a = 0 is the unique ellipse E tangent to each facet of P₂,
 - a < 0 inside E and a > 0 outside.

$$b(\tau) = \frac{\langle \tau_2 \mathbf{d}_{10} - \tau_1 \mathbf{d}_{20}, \| \mathbf{D}_{20}(\tau) \|^2 \mathbf{d}_{10} - \| \mathbf{D}_{10}(\tau) \|^2 \mathbf{d}_{20} \rangle}{2\| \mathbf{d}_{10} \wedge \mathbf{d}_{20} \|}$$

- b = 0 is the unique cubic C through the 11 marked points,
- only the odd circuit C_o of C contains the 11 points, while the even circuit C_e (if it exists) does not intersect P_2 .

Marco Compagnoni

Introduction

The TDO Map

The Multilinea Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusion and Perspective

Extra

The Image of au_2

- On the light gray region E^- we have a < 0 and c > 0.
- On the medium gray region $U = U_0 \cup U_1 \cup U_2$ we have a, b, c > 0.

Theorem

- $Im(\tau_2) = E^- \cup \overline{U} \setminus \{T_0^{\pm}, T_1^{\pm}, T_2^{\pm}\}$ • $|\tau_2^{-1}(\tau)| = \begin{cases} 2 & \text{if } \tau \in U \\ 1 & \text{if } \tau \in Im(\tau_2) \setminus U \end{cases}$
- $au\in\partial P_2\cap \mathsf{Im}(au_2)$: $L(au), C_0^-$ and $A_1(au), A_2(au)$ meet tangentially.
- τ ∈ E: L(τ) is parallel to a generatrix of C₀ and A₁(τ), A₂(τ) have one parallel asymptote.
- $au\in E^-$: L(au) intersects both C_0^-, C_0^+ and $|A_1(au)\cap A_2(au)|=1.$
- $\tau \in U$: $L(\tau)$ intersects twice C_0^- and $|A_1(\tau) \cap A_2(\tau)| = 2$.

Marco Compagnoni

Introduction

The TDOA Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketches about τ_3

Conclusions and Perspective

Extra

The Bifurcation Problem

Given $oldsymbol{ au}\in {\sf Im}(oldsymbol{ au}_2)$ and a negative solution $\lambda(oldsymbol{ au})$:

 $\mathbf{x}(\boldsymbol{\tau}) = \mathbf{L}_{\mathbf{0}} + \lambda \ast ((\tau_2 \mathbf{d}_{\mathbf{10}} - \tau_1 \mathbf{d}_{\mathbf{20}}) \wedge \mathbf{e}_{\mathbf{3}}).$

Theorem:

Ẽ = τ₂⁻¹(*E*) is the bifurcation curve, separating the 1:1 and 2:1 regions of τ₂;

• on E we have $\lambda(\tau) = -c(\tau)/2b(\tau)$, thus \tilde{E} is a rational quintic, smooth on \mathbb{R}^2 .

- The localization is unique on light grey region $\tilde{E}_{2}^{-} = \tau_{2}^{-1}(E^{-});$
- τ_2 is a double cover on medium grey region $\tilde{U}_0 \cup \tilde{U}_1 \cup \tilde{U}_2 = \tau_2^{-1}(U)$, where D and ∂P_2 are the ramification and branching loci.
- As τ approaches to ∂P₂, τ₂⁻¹(τ) converges to a point on D.
 As τ approaches to E, τ₂⁻¹(τ) converges to a point on Ẽ and to another at infinity.

Marco Compagnoni

Introduction

The TDO/ Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The

complete TDOA map and sketches about τ_3

Conclusions and Perspectives

Extra

The Complete TDOA Map

In a noisy scenario we have to consider all the TDOAs.

$$egin{array}{cccc} au_{2}^{*} & : & \mathbb{R}^{2} & \longrightarrow & \mathbb{R}^{3} \ & \mathbf{x} & \longmapsto & (au_{10}(\mathbf{x}), au_{20}(\mathbf{x}), au_{21}(\mathbf{x})) \end{array}$$

The set of noiseless measurements is $Im(\tau_2^*)$. It is contained into the plane

$$\mathcal{H} = \{ \boldsymbol{\tau}^* \in \mathbb{R}^3 \mid \tau_{10}^* + \tau_{20}^* - \tau_{21}^* = \mathbf{0} \}.$$

Let $p_i: \mathbb{R}^3 \to \mathbb{R}^2$ be the projection forgetting the *i*-th coordinate. Then, we have:

 $au_2 = p_3 \circ au_2^*$ and $p_3 : \operatorname{Im}(au_2^*) \longleftrightarrow \operatorname{Im}(au_2)$

The description of the measurements set $Im(\tau_2^*)$ is the starting point for the study of the statistical model.

The Image of au_3

- $Im(\tau_3)$ is a semi-algebraic set contained in a sextic surface Σ .
- Σ is tangent to all the facets of the polytope P₃.
- Σ has many singular points and a singular locus on a conic S contained in the plane Π.

Geometry of TDOAbased Source Localization

Marco Compagnoni

Introduction

The TDO/ Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketches about τ_3

Conclusions and Perspectives

Extra

Marco Compagnoni

Introduction

The TDO/ Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The

 $\begin{array}{c} \text{complete} \\ \text{TDOA map} \\ \text{and sketches} \\ \text{about } \boldsymbol{\tau_3} \end{array}$

Conclusions and Perspectives

Extra

The Localization Problem

- The TDOA map τ_3 is a homeomorphism if, and only if, the convex hull of m_0, \ldots, m_3 is a triangle.
- If the convex hull is a quadrangle, there are two 1D sets C_1, C_2 where the TDOA map is 2 : 1. We have $C_1 \cup C_2 = \tau_3^{-1}(S)$.
- The ramification locus is $D_1 \cup D_2$, where $\mathsf{rk}(J(\tau_3)) = 1$.

Marco Compagnoni

Introduction

The TDOA Map

The Multilinea Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketches about τ_3

Conclusions and Perspectives

Extra

Conclusions and Perspectives

In this work:

- we studied the planar TDOA-based localization problem with three receivers in a noiseless scenario;
- in particular we have characterized the measurements space and the bifurcation curve in terms of real (semi)algebraic sets;
 - we introduced the complete measurements space.

In future works we will:

- complete the cases $n \ge 3$;
- study the 3-dimensional TDOA-based localization;
- study the statistical properties of the model.

Bibliography

based Source Localization Marco

Geometry of TDOA-

Compagnoni

Introduction

The TDO/ Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusions and Perspectives

Extra

M.Compagnoni, P.Bestagini, F.Antonacci, A.Sarti, S.Tubaro, Localization of Acoustic Sources Through the Fitting of Propagation Cones Using Multiple Independent Arrays, IEEE Transactions on Audio, Speech, and Language Processing, Vol. 20 (2012), Issue 7, 1964–1975.

P.Bestagini, M.Compagnoni, F.Antonacci, A.Sarti, S.Tubaro, TDOA-Based Acoustic Source Localization in the Space-Range Reference Frame, to appear in Multidimensional Systems and Signal Processing.

B.Coll, J.J.Ferrando, J.A.Morales-Lladosaz, *Positioning* systems in Minkowski space-time: from emission to inertial coordinates, Class.Quant.Grav. 27, 065013 (2010).

B.Coll, J.J.Ferrando, J.A.Morales-Lladosaz, *Positioning* systems in Minkowski space-time: Bifurcation problem and observational data, arXiv:1204.2241v2 [gr-qc].

Marco Compagnoni

Introduction

The TDO/ Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA may and sketch about τ_3

Conclusion: and Perspective

Extra

Geometric Interpretation

イロト 不得 トイヨト イヨト

-

 $A_i(\tau) := \{ \mathbf{x} \in \mathbb{R}^2 | \tau_i(\mathbf{x}) = \tau, \tau \in \mathbb{R} \}$ is the level set of $\tau_i(\mathbf{x})$.

- If $|\tau| > d_{i0}$, then $A_i(\tau) = \emptyset$.
- If 0 < |τ| < d_{i0}, then A_i(τ) is the branch of hyperbola with foci m₀, m_i and parameter τ.

•
$$A_i(au) = egin{cases} r_j^+ & ext{if } au = d_{i0} \ r_j^- & ext{if } au = -d_{i0} \ a_j & ext{if } au = 0 \end{cases}$$

Marco Compagnoni

Extra

We take:

- V a 3-dimensional \mathbb{R} -vector space and $\wedge V$ its exterior algebra;
- $b: V \times V \rightarrow \mathbb{R}$ a non-degenerate, symmetric bilinear form with signature (+ + -);
- $B = (\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3})$ an orthonormal basis.

Then:

- $\langle \mathbf{u}, \mathbf{v} \rangle = b(\mathbf{u}, \mathbf{v}) = \langle \sum_{i=1}^{3} u_i \mathbf{e}_i, \sum_{i=1}^{3} v_i \mathbf{e}_i \rangle = u_1 v_1 + u_2 v_2 u_3 v_3;$
- $\|\mathbf{u}\|^2 = b(\mathbf{u}, \mathbf{u}) = \|\sum_{i=1}^3 u_i \mathbf{e}_i\|^2 = u_1^2 + u_2^2 u_3^2;$ $\langle \mathbf{u}_1 \wedge \cdots \wedge \mathbf{u}_k, \mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_k \rangle = \det \begin{pmatrix} \langle \mathbf{u}_1, \mathbf{v}_1 \rangle & \dots & \langle \mathbf{u}_1, \mathbf{v}_k \rangle \\ \vdots & \vdots \\ \langle \mathbf{u}_k, \mathbf{v}_1 \rangle & \dots & \langle \mathbf{u}_k, \mathbf{v}_k \rangle \end{pmatrix};$

 - $(\mathbf{e_1} \land \mathbf{e_2}, \mathbf{e_1} \land \mathbf{e_3}, \mathbf{e_2} \land \mathbf{e_3})$ is an orthonormal basis of $\wedge^2 V$ with signature (+ - -);
 - $\omega := \mathbf{e_1} \wedge \mathbf{e_2} \wedge \mathbf{e_3}$ is an orthonormal basis of $\wedge^3 V$ with $\|\omega\|^2 = -1$; • $*: \wedge^k V \to \wedge^{3-k} V$ defined as $\mathbf{x} \wedge *\mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle \boldsymbol{\omega}$.

The 3D Minkowski Space

Marco Compagnoni

Introduction

The TDO/ Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusions and Perspective

Extra

The Quartic

$$c(\tau) = \|\mathbf{D}_{0}(\mathbf{L}_{0}(\tau))\|^{2} = \\ \frac{\|\|\mathbf{D}_{10}(\tau)\|^{2}\mathbf{d}_{20} - \|\mathbf{D}_{20}(\tau)\|^{2}\mathbf{d}_{10}\|^{2}}{4\|\mathbf{d}_{10} \wedge \mathbf{d}_{20}\|^{2}}$$

Proposition

c(au) is a degree four polynomial in (au_1, au_2) and:

- $c(\tau) = 0$ iff $\tau \in \{R^0, R^*, R_1^*, R_1^0\}$, otherwise $c(\tau) > 0$.
- $\nabla c(\tau)$ vanishes at R^0, R^*, R_1^*, R_1^0 .
- In P²_C, c(τ) = 0 is a quartic algebraic curve with four (real) singular points, and so it factors as two conics.

Marco Compagnoni

Introduction

The TDO/ Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusions and Perspectives

Extra

The Ellipse

$$egin{aligned} \mathsf{a}(m{ au}) &= \|\mathbf{v}(m{ au})\|^2 = \ \| au_2 \mathbf{d_{10}} - au_1 \mathbf{d_{20}}\|^2 - \|\mathbf{d_{10}} \wedge \mathbf{d_{20}}\|^2 \end{aligned}$$

• $E := \{ \tau \in \mathbb{R}^2 \mid a(\tau) = 0 \};$ • $E^+ := \{ \tau \in \mathbb{R}^2 \mid a(\tau) > 0 \};$ • $E^- := \{ \tau \in \mathbb{R}^2 \mid a(\tau) < 0 \}.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition

a(au) is a degree two polynomial in (au_1, au_2) and:

- $E \subset P_2$ is a smooth ellipse with center at **0**.
- *E* is the unique conic tangent to each facet of *P*₂.
- E^- is the connected component of $\mathbb{R}^2 \setminus E$ containing **0**.

Marco Compagnoni

Introduction

The TDO/ Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusions and Perspectives

Extra

The Cubic

$$b(au) = \langle \mathsf{D}_0(\mathsf{L}_0(au)), \mathsf{v}(au)
angle = \ rac{\langle au_2 \mathsf{d}_{10} - au_1 \mathsf{d}_{20}, \| \mathsf{D}_{20}(au) \|^2 \mathsf{d}_{10} - \| \mathsf{D}_{10}(au) \|^2 \mathsf{d}_{20}
angle}{2 \| \mathsf{d}_{10} \wedge \mathsf{d}_{20} \|}$$

• $C := \{ \tau \in \mathbb{R}^2 \mid b(\tau) = 0 \};$ • $C^+ := \{ \tau \in \mathbb{R}^2 \mid b(\tau) > 0 \};$

•
$$C^- := \{ \tau \in \mathbb{R}^2 \mid b(\tau) < 0 \}.$$

Proposition

b(au) is a degree three polynomial in (au_1, au_2) and:

- C is the unique cubic curve containing the points $T_0^{\pm}, T_1^{\pm}, T_2^{\pm}, R^0, R_1^0, R^*, R_1^*, \mathbf{0}$.
- C is a smooth curve, unless $d_{10} = d_{20}$. In this case, C is the union of a line and a conic.

- *C* is a cubic curve with 2–fold rotational symmetry w.r.t. **0**, which is an inflectional point if *C* is smooth.
- C intersects transversally E and the lines supporting ∂P_2 .
- The tangent to C at R^0, R_1^0, R^*, R_1^* are orthogonal to F_0^{\pm} .

Proposition

Extra

If C is smooth, the points T_0^{\pm} , T_1^{\pm} , T_2^{\pm} , R^0 , R^* , R_1^0 , R_1^* , $\mathbf{0}$ belong to the odd circuit C_o of C, while the even circuit C_e (if it exists) does not intersect P_2 .

Marco Compagnoni

Introduction

The TDO/ Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketches about τ_3

Conclusions and Perspective

Extra

The Quintic

Given $\tau \in Im(\tau_2)$ and a negative solution $\lambda(\tau)$ of the quadratic equation, on the x-plane we have

$$\mathbf{x}(\boldsymbol{\tau}) = \mathbf{L}_{\mathbf{0}}(\boldsymbol{\tau}) + \lambda(\boldsymbol{\tau}) * ((\tau_2 \mathbf{d}_{10} - \tau_1 \mathbf{d}_{20}) \wedge \mathbf{e}_3).$$

The preimage $E' = \tau_2^{-1}(E)$ of the ellipse is the **bifurcation curve**, which separates the single and double preimage regions.

- On E we have a(au) = 0, thus $\lambda(au) = -c(au)/2b(au)$.
- Because of the symmetry, $\mathbf{x}(\mathbf{ au})$ defines a 2 : 1 map E
 ightarrow E'.
- By "parametrizing" *E* via the pencil of lines through **0**, we obtain a parametric representation of *E'* given as ratios of degree 5 polynomials without common factors.

Theorem

E' is a rational degree 5 curve, whose ideal points are the ones of the lines r_0, r_1, r_2 , and the two ones of E.

based Source

Marco

Extra

- E' on \mathbb{R}^2 consists of **three disjoint unbounded arcs**, one for each arc of $E \cap Im(\tau_2)$, with $\mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_2 \notin E'$.
- E' has no self-intersections and it is regularly parameterized.

• In $\mathbb{P}^2_{\mathbb{C}}$, the rational quintic curve has singular points.

- the Bifurcation Problem
- The complete TDOA map and sketche about τ_3

• τ_2 is 1-to-1 on \tilde{E}^- .

- Conclusions and Perspectives
- Extra

- $\tilde{E}^- = \tau_2^{-1}(E^-)$, $\tilde{U}_i = \tau_2^{-1}(U_i)$ are open subsets separate by E'.
- \tilde{U}_i has two connected components separeted by $r_j^{(\pm)}, r_k^{(\pm)}$, and τ_2 is 1-to-1 on each of them.
 - As au approaches to $\partial P_2, \, { au_2}^{-1}(au)$ converges to a point on $r_j^\pm \cup r_k^\pm.$
 - As τ approaches to E, τ2⁻¹(τ) converges to a point on E' and to another at ∞.

Marco Compagnoni

Introduction

The TDO/ Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusions and Perspective

Extra

Special Configurations I

Assume that $\mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_2$ are contained in the straight line *r*. Let r^0 the smallest line segment containing all the three points, and r^c its complement in *r*.

- If x ∈ A₁(τ) ∩ A₂(τ), then A₁(τ) ∩ A₂(τ) is finite if, and only if, x ∈ ℝ² \ r^c.
- $A_1(\tau)$ and $A_2(\tau)$ meet transversally at **x** if, and only if, $\mathbf{x} \in \mathbb{R}^2 \setminus r.$

Special Configurations II

$$\left\{ \begin{array}{l} -d_{10} \leq \tau_1 \leq d_{10} \\ -d_{20} \leq \tau_2 \leq d_{20} \\ -d_{21} \leq \tau_2 - \tau_1 \leq d_2 \end{array} \right.$$

There are two redundant inequalities, therefore the polygon P_2 has only four facets.

In the following we assume that \mathbf{m}_0 is between \mathbf{m}_1 and \mathbf{m}_2 , that corresponds to the first polytope.

1

Geometry of TDOAbased Source Localization

Marco Compagnoni

Introduction

The TDOA Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about **7**3

Conclusions and Perspectives

Extra

Special Configurations III

based Source Localization

Geometry of TDOA-

Marco Compagnoni

Introduction

The TDO Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusions and Perspectives

Extra

Linear problem: $L(au) = \Pi_1(au) \cap \Pi_2(au)$. Then:

- $L(\boldsymbol{\tau}) = \emptyset$ if, and only if, $d_{10}\tau_2 + d_{20}\tau_1 = 0$.
- $L(\tau) = \Pi_1(\tau) = \Pi_2(\tau)$ if, and only if, $\tau = (\pm d_{10}, \mp d_{20})$.
 - $L(\tau)$ is a line parallel to the x-plane otherwise, with

$$\begin{split} \mathsf{D}_0(\mathsf{L}_0(\tau)) &= \frac{*\left(\mathsf{v}(\tau) \land \left(\|\mathsf{D}_{20}(\tau)\|^2 \mathsf{D}_{10}(\tau) - \|\mathsf{D}_{10}(\tau)\|^2 \mathsf{D}_{20}(\tau)\right)\right)}{2d_{10}^2 (d_{10}\tau_2 + d_{20}\tau_1)} \\ \mathsf{v}(\tau) &= *(\mathsf{d}_{10} \land \mathbf{e}_3) \end{split}$$

Quadratic problem: $\|\mathbf{v}(\tau)\|^2 > 0$, $\langle \mathsf{D}_0(\mathsf{L}_0(\tau)), \mathbf{v}(\tau) \rangle = 0$, then

$$\|\mathbf{v}(\boldsymbol{\tau})\|^2 \lambda^2 + \|\mathbf{D}_{\mathbf{0}}(\mathbf{L}_{\mathbf{0}}(\boldsymbol{\tau}))\|^2 = 0.$$

The line $L(\tau)$ intersect only one half-cones C_0^+, C_0^- :

 $\langle \mathsf{D}_{\mathbf{0}}(\mathsf{L}_{\mathbf{0}}(\boldsymbol{ au})), \mathsf{e}_{\mathbf{3}} \rangle > 0.$

Marco Compagnoni

Introduction

The TDO/ Map

The Multilinea Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about **7**3

Conclusions and Perspectives

Extra

Special Configurations IV

Let *E* be the open segment with endpoints R^1 , R^2 and *T* the triangle with side *E* and vertex R^0 .

Theorem

$$egin{aligned} & Im(au_2) = T \setminus E \ & | au_2^{-1}(au)| = egin{cases} \infty & ext{if } au \in \partial E \ 2 & ext{if } au \in \mathring{T} \ 1 & ext{otherwise} \end{aligned}$$

τ ∈ E: Π₁(τ), Π₂(τ) are parallel and A₁(τ), A₂(τ) have parallel asymptotes.

• $au \in \partial E$: $L(au) = \Pi_1(au) = \Pi_2(au)$ and $A_1(au) \cap A_2(au) = r^c$.

- τ ∈ ∂T \ Ē: L(τ) is tangent to C₀⁻ and A₁(τ), A₂(τ) intersect at one point on r⁰, with double multiplicity.
- τ ∈ Ť: L(τ) intersects C₀⁻ and A₁(τ), A₂(τ) intersect at two points symmetric w.r.t. the line r.

Marco Compagnoni

Introduction

The TDO Map

The Multilinea Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusions and Perspectives

Extra

Restoring the Symmetry I

In the definition of the TDOA map we chose m_0 as reference receiver, breaking the symmetry of the problem.

 $\mathsf{D}_{\mathbf{j}}(\mathsf{X},\tau) = \mathsf{D}_{\mathbf{0}}(\mathsf{X},\tau) + \mathsf{D}_{\mathbf{0}\mathbf{j}}(\tau) \qquad \mathsf{D}_{\mathbf{i}\mathbf{j}}(\tau) = \mathsf{D}_{\mathbf{i}\mathbf{0}}(\tau) + \mathsf{D}_{\mathbf{0}\mathbf{j}}(\tau)$

Theorem

 $\pi(C_0^-(\tau) \cap C_1^-(\tau) \cap C_2^-(\tau)) = \pi(C_i^-(\tau) \cap \Pi_{ji}(\tau) \cap \Pi_{ki}(\tau))$ In particular the three lines $L_0(\tau), L_1(\tau), L_2(\tau)$ coincide.

$$egin{aligned} & oldsymbol{v}_0(au) = oldsymbol{v}_1(au) = oldsymbol{v}_2(au). \ & oldsymbol{\mathsf{D}}_0(oldsymbol{\mathsf{L}}_0(au))
eq oldsymbol{\mathsf{D}}_1(oldsymbol{\mathsf{L}}_1(au))
eq oldsymbol{\mathsf{D}}_2(oldsymbol{\mathsf{L}}_2(au)). \end{aligned}$$

The localization does not depend on the choice of the reference receiver. What does it happen to the $Im(\tau_2)$ in the τ -space?

Marco Compagnoni

Introduction

The TDC Map

The Multilinea Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusions and Perspectives

Extra

Restoring the Symmetry II

- The complete τ_2^* : $\mathbb{R}^2 \longrightarrow \mathbb{R}^3$ TDOA map $\mathbf{x} \longmapsto (\tau_{10}(\mathbf{x}), \tau_{20}(\mathbf{x}), \tau_{21}(\mathbf{x}))$
- $\mathcal{H} = \{ \boldsymbol{\tau}^* \in \mathbb{R}^3 \mid \mathbf{D}_{01}(\boldsymbol{\tau}^*) + \mathbf{D}_{12}(\boldsymbol{\tau}^*) + \mathbf{D}_{20}(\boldsymbol{\tau}^*) = \mathbf{0} \};$ • $\mathcal{P}_2 = \{ \boldsymbol{\tau}^* \in \mathcal{H} \mid \|\mathbf{D}_{ji}(\boldsymbol{\tau}^*)\|^2 \ge 0 \text{ for every } i, j \};$
- $\mathcal{E} = \{ \boldsymbol{\tau}^* \in \mathcal{H} \mid \| \mathbf{v_0}(\boldsymbol{\tau}^*) \|^2 = 0 \};$
 - $\mathcal{C}_i = \{ \boldsymbol{\tau}^* \in \mathcal{H} \mid \langle \mathsf{D}_{\mathbf{i}}(\mathsf{L}_{\mathbf{i}}(\boldsymbol{\tau}^*), \mathsf{v}_{\mathbf{i}}(\boldsymbol{\tau}^*) \rangle = 0 \}.$

Theorem

Let $p_i : \mathbb{R}^3 \to \mathbb{R}^2$ be the projection forgetting the *i*-th coordinate.

- H is a plane containing the admissible TDOA triples;
- \mathcal{P}_2 is a polygon such that $p_3(\mathcal{P}_2) = P_2$;
- \mathcal{E} is the ellipse tangent to all the sides of \mathcal{P}_2 and $p_3(\mathcal{E}) = E$;
- C_i is the cubic curve containing $\mathcal{E} \cap \partial \mathcal{P}_2, \mathcal{R}^i, \mathcal{R}_0^i, \mathcal{R}^{i*}, \mathcal{R}_1^{i*}, \mathbf{0}$.

 $au_2 = p_3 \circ au_2^*$ and $p_3 : Im(au_2^*) \longleftrightarrow Im(au_2)$

Marco Compagnoni

Introduction

The TDO/ Map

The Multilinear Algebra Solution

The Image of τ_2 and the Bifurcation Problem

The complete TDOA map and sketche about τ_3

Conclusions and Perspectives

Extra

The accuracy of the localization

- |det(J(x))| is the ratio between the areas of two corresponding infinitesimal regions in the τ and in the x planes. At first order, the accuracy is best in the regions of maximum of |det(J(x))|.
- The dashed lines are the level sets of |det(J(x))|. The local error analysis does not take count of the global aspects of localization.