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2D TDOA–based Localization

Problem: point-like (acoustic) source localization based on the
time differences of arrival (TDOA) of a signal to distinct
receivers lying on a plane.

Experimental data:
the TDOAs τji of the signal to
receivers mj and mi, measured
as the time shifts of the signal
wavefront.

Goal: obtain a complete description of the statistical model
behind TDOA-based source localization, possibly with
unsynchronized and uncalibrated receivers.
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The Geometric Propagation Model

m0m1

m2

x

di(x) = x−mi di (x) = ‖di(x)‖
dji = mj −mi dji = ‖dji‖

τ̂ji = measured TDOA
εji = measurement error
Propagation speed equal to 1.

τji(x) = dj(x)− di(x)

τ̂ji = τij(x) + εji

τij(x) = τ̂ji is an hyperbola branch
with foci mi,mj ⇒ the source is at
the branches intersection.

• Deterministic problem: if εji = 0, conditions for existence
and uniqueness of the localization (the identifiability problem).

• Statistical problem: if εji 6= 0, characterize the non linear
(and non algebraic) model.
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The GPS Problem
In the classical GPS problem one searches the location of a
source in space using the times of arrival ti of signals (TOAs)
from n distinct satellites to the GPS receiver.

The TOA Model: ti(x) = di(x) + εi + b

• Because of the low accuracy of the receiver clock, one
has to consider an additional bias b for each TOA.

• In order to eliminate b, one chooses a reference satellite
m1 and takes as input data the differences ti(x)− t1(x).

In the deterministic case the GPS problem reduces to
the TDOA-based localization.

• Existence problem: how many satellites are necessary
to locate a source?

• Uniqueness or Bifurcation problem: in which cases is
the localization unique?
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The TDOA Map

Hypothesis:

• a source x ∈ R2;

• n + 1 synchronized and calibrated receivers m0, . . . ,mn ∈ R2;

• noiseless scenario, i.e. εji = 0.

τji (x) = τj0(x)− τi0(x) ⇒ n independent τi0(x), i = 1, . . . , n.

The TDOA τn : R2 −→ Rn

map x 7−→ (τ10(x) , . . . , τn0(x))

Given a measurements array τ := (τ1, . . . , τn) ∈ Rn, we have:

• Existence of localization if, and only if, τ ∈ Im(τn), so the
reduced set of noiseless measurements is Im(τn).

• Uniqueness of localization if, and only if, |τn−1(τ )| = 1.

The case n = 2 is the first one allowing the injectivity of τn.
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The local analysis of τ2

τi0(x) ∈ C∞(R2 \ {m0,m1,m2}) and ∇τi0(x) = d̃i(x)− d̃0(x).

r+2 r−2

r+1

r−1

r+0

r−0

m0 m1

m2
A2(τ2) A1(τ1)

D := ∪2i=0(r−i ∪ r+i )

The jacobian of τ2 at x 6=
m0,m1,m2 has

rk(J) =

{
1 if x ∈ D
2 otherwise

Ai (τ) := {x ∈ R2| τi0(x) = τ}, where τ ∈ R.

Proposition:
Assume x ∈ A1(τ1) ∩ A2(τ2). Then, A1(τ1),A2(τ2) meet
transversally at x if, and only if, x ∈ R2 \ D.
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The Algebraic Global Analysis
Let τ = (τ1, τ2), we denote Ai (τ ) := Ai (τi ). We have
τ ∈ Im(τ2) if, and only if, A1(τ ) ∩ A2(τ ) 6= ∅.

m0 m1

m2

2D algebraic approach:

• Intersection of the two hyperbolas containing A1(τ ),A2(τ ).

• Problems: extra intersections, complex intersections.
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The Algebraic Global Analysis{
τ1 = d1(x)− d0(x)
τ2 = d2(x)− d0(x)

⇒


τ1 − τ = d1(x)
τ2 − τ = d2(x)
τ = −d0(x)

⇒


(τ1 − τ)2 = d1(x)2

(τ2 − τ)2 = d2(x)2

τ2 = d0(x)2

3D algebraic approach:

• Intersection of three (half-)cones.

• Partially linear: the problem is equivalent to the intersection
of a (half-)cone and two planes.

• No misleading solutions.
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The 3D Minkowski Space
Notation:

X = (x, τ) Di(X, τ ) = X−Mi(τ )
Mi(τ ) = (mi, τi ) Dji(τ ) = Mj(τ )−Mi(τ )

The cones intersection:{
‖D0(X, τ )‖2 = 0
‖Di(X, τ )‖2 = 0

⇒
{
‖D0(X, τ )‖2 = 0
〈Di0(τ ),D0(X, τ )〉 = 1

2 ‖ Di0(τ ) ‖2

Let us define:

• C0(τ ) = {X ∈ R2,1 | ‖ D0(X, τ ) ‖2= 0};
• C0(τ )− = {X ∈ C0(τ ) | 〈D0(X, τ ), e3〉 ≥ 0}.
• Πi (τ ) = {X ∈ R2,1 | 〈Di0(τ ),D0(X, τ )〉 = 1

2 ‖ Di0(τ ) ‖2}

Theorem
Let π : R2,1 → R2 be the projection onto the x–plane. Then

π(C−0 ∩ Πi (τ )) =

{
Ai (τ ) if τi 6= −di0
Ai (τ ) ∪ r0j if τi = −di0

with i 6= j .
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The Source Solution

Linear problem: L(τ ) = Π1(τ ) ∩ Π2(τ ) is a line for each
τ ∈ R2, containing the point L0(τ ) and parallel to v(τ )

D0(L0(τ )) = −
∗
((
‖D10(τ )‖2d20 − ‖D20(τ )‖2d10

)
∧ e3

)
2‖d10 ∧ d20‖

v(τ ) = ∗(D10(τ )∧D20(τ )) = ∗((d10∧d20)+(τ2d10−τ1d20)∧e3).

Quadratic problem: A1(τ ) ∩ A2(τ ) ⊆ π(C−0 ∩ L(τ )). Hence,
we study ‖D0(L0(τ )) + λv(τ )‖2 = 0, or, explicitly,

‖v(τ )‖2λ2 + 2λ〈D0(L0(τ )), v(τ )〉+ ‖D0(L0(τ ))‖2 = 0.

This equation in λ ∈ R has degree at most 2, with coefficients
depending on τ .
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The Source Solution Analysis

By setting:

• a(τ ) = ‖v(τ )‖2 = ‖τ2d10 − τ1d20‖2 − ‖d10 ∧ d20‖2

• b(τ ) = 〈D0(L0(τ )), v(τ )〉 =

=
〈τ2d10 − τ1d20, ‖D20(τ )‖2d10 − ‖D10(τ )‖2d20〉

2‖d10 ∧ d20‖

• c(τ ) = ‖D0(L0(τ ))‖2 =

∥∥‖D10(τ )‖2d20 − ‖D20(τ )‖2d10

∥∥2
4‖d10 ∧ d20‖2

⇒ a(τ )λ2 + 2b(τ )λ + c(τ ) = 0.

We are interested into the real negative solutions, therefore we
use Descartes’ rule of signs to characterize Im(τ2).

The coefficients are polynomials with respect to τ1, τ2.
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The Polytope

F−
2

F+
1

F+
2

F−
1

F+
0

F−
0

P2

R0

R1

R2


−d10 ≤ τ1 ≤ d10
−d20 ≤ τ2 ≤ d20
−d21 ≤ τ2 − τ1 ≤ d21

The six inequalities define a polygon
P2, i.e. a two dimensional convex
polytope. P2 has six facets F±k .

P2 = {τ ∈ R2| ‖Dji (τ )‖2 ≥ 0, ∀ i , j}

• Im(τ2) ( P2, in particular τ2
−1(F±k ) = r±k and τ2

−1(Rk) = mk.

• ∆(τ ) = b(τ )2 − 4a(τ )c(τ ) = 0 is a sextic algebraic curve in
the τ–plane, and it factors as the six lines supporting F±k .

• ∆ > 0 on P̊2.
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The analysis of the coefficients

R0

R0
1

R∗

R∗
1

Co

E

c =
‖‖D10(τ )‖2d20−‖D20(τ )‖2d10‖2

4‖d10∧d20‖2

• c(τ ) = 0 iff τ ∈ {R0,R∗,R∗1 ,R
0
1},

• c(τ ) > 0 otherwise.

a = ‖τ2d10 − τ1d20‖2 − ‖d10 ∧ d20‖2

• a = 0 is the unique ellipse E
tangent to each facet of P2,

• a < 0 inside E and a > 0 outside.

b(τ ) = 〈τ2d10−τ1d20,‖D20(τ )‖2d10−‖D10(τ )‖2d20〉
2‖d10∧d20‖

• b = 0 is the unique cubic C through the 11 marked points,

• only the odd circuit Co of C contains the 11 points, while the
even circuit Ce (if it exists) does not intersect P2.
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The Image of τ2

R0

R1

R2

T+
1

T−
1

T+
2

T−
2

T+
0

T−
0

E−

U0

U1

U2

• On the light gray region E− we have
a < 0 and c > 0.

• On the medium gray region U =
U0 ∪ U1 ∪ U2 we have a, b, c > 0.

Theorem

• Im(τ2) = E− ∪ Ū \ {T±0 ,T
±
1 ,T

±
2 }

• |τ2
−1(τ )| =

{
2 if τ ∈ U

1 if τ ∈ Im(τ2) \ U

• τ ∈ ∂P2 ∩ Im(τ2): L(τ ),C−0 and A1(τ ),A2(τ ) meet tangentially.

• τ ∈ E : L(τ ) is parallel to a generatrix of C0 and A1(τ ),A2(τ )
have one parallel asymptote.

• τ ∈ E−: L(τ ) intersects both C−0 ,C
+
0 and |A1(τ ) ∩ A2(τ )| = 1.

• τ ∈ U: L(τ ) intersects twice C−0 and |A1(τ ) ∩ A2(τ )| = 2.
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The Bifurcation Problem
Given τ ∈ Im(τ2) and a negative solution λ(τ ):

x(τ ) = L0 + λ ∗((τ2d10 − τ1d20) ∧ e3).

Theorem:

• Ẽ = τ2
−1(E ) is the bifurcation

curve, separating the 1:1 and 2:1
regions of τ2;

• on E we have
λ(τ ) = −c(τ )/2b(τ ), thus Ẽ is
a rational quintic, smooth on R2.

• The localization is unique on light grey region Ẽ− = τ2
−1(E−);

• τ2 is a double cover on medium grey region Ũ0 ∪ Ũ1 ∪ Ũ2 =τ2
−1(U),

where D and ∂P2 are the ramification and branching loci.
• As τ approaches to ∂P2, τ2

−1(τ ) converges to a point on D.
As τ approaches to E , τ2

−1(τ ) converges to a point on Ẽ and to
another at infinity.
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The Complete TDOA Map

In a noisy scenario we have to consider all the TDOAs.

τ2
∗ : R2 −→ R3

x 7−→ (τ10(x), τ20(x), τ21(x))

The set of noiseless measurements is Im(τ2
∗). It is

contained into the plane

H = {τ ∗ ∈ R3 | τ∗10 + τ∗20 − τ∗21 = 0}.

Let pi :R3→R2 be the projection forgetting the i-th coordinate.
Then, we have:

τ2 = p3 ◦ τ2
∗ and p3 : Im(τ2

∗)←→ Im(τ2)

The description of the measurements set Im(τ2
∗) is the starting

point for the study of the statistical model.
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The Image of τ3

• Im(τ3) is a semi–algebraic set contained in a sextic surface Σ.

• Σ is tangent to all the facets of the polytope P3.

• Σ has many singular points and a singular locus on a conic S
contained in the plane Π.
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The Localization Problem

• The TDOA map τ3 is a homeomorphism if, and only if, the
convex hull of m0, . . . ,m3 is a triangle.

• If the convex hull is a quadrangle, there are two 1D sets C1,C2

where the TDOA map is 2 : 1. We have C1 ∪ C2 = τ3
−1(S).

• The ramification locus is D1 ∪ D2, where rk(J(τ3)) = 1.
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Conclusions and Perspectives

In this work:

• we studied the planar TDOA-based localization problem with
three receivers in a noiseless scenario;

• in particular we have characterized the measurements space
and the bifurcation curve in terms of real (semi)algebraic sets;

• we introduced the complete measurements space.

In future works we will:

• complete the cases n ≥ 3;

• study the 3-dimensional TDOA-based localization;

• study the statistical properties of the model.
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Geometric Interpretation

Ai(τ) := {x ∈ R2| τi(x) = τ, τ ∈ R} is the level set of τi(x).

r+j r−j

aj

m0 mi

• If |τ | > di0, then Ai(τ) = ∅.
• If 0 < |τ | < di0, then Ai(τ) is the branch of hyperbola

with foci m0,mi and parameter τ .

• Ai(τ) =


r+j if τ = di0
r−j if τ = −di0
aj if τ = 0
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The 3D Minkowski Space
We take:
• V a 3–dimensional R–vector space and ∧V its exterior algebra;

• b : V × V → R a non–degenerate, symmetric bilinear form with
signature (+ + −);

• B = (e1, e2, e3) an orthonormal basis.

Then:
• 〈u, v〉 = b(u, v) = 〈

∑3
i=1 uiei,

∑3
j=1 viei〉 = u1v1 + u2v2 − u3v3;

• ‖ u ‖2= b(u,u) = ‖
∑3

i=1 uiei ‖2= u21 + u22 − u23 ;

• 〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk〉 = det

 〈u1, v1〉 . . . 〈u1, vk〉
...

...
〈uk, v1〉 . . . 〈uk, vk〉

;

• (e1 ∧ e2, e1 ∧ e3, e2 ∧ e3) is an orthonormal basis of ∧2V with
signature (+ − −);

• ω := e1∧e2∧e3 is an orthonormal basis of ∧3V with ‖ω‖2=−1;

• ∗ : ∧kV → ∧3−kV defined as x ∧ ∗y = 〈x, y〉ω.
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The Quartic

F−
2

F+
1

F+
2

F−
1

F+
0

F−
0

P2

R0

R0
1

R∗

R∗
1

c(τ ) = ‖D0(L0(τ ))‖2 =∥∥‖D10(τ )‖2d20 − ‖D20(τ )‖2d10

∥∥2
4‖d10 ∧ d20‖2

Proposition

c(τ ) is a degree four polynomial in (τ1, τ2) and:

• c(τ ) = 0 iff τ ∈ {R0,R∗,R∗1 ,R
0
1}, otherwise c(τ ) > 0.

• ∇c(τ ) vanishes at R0,R∗,R∗1 ,R
0
1 .

• In P2
C, c(τ ) = 0 is a quartic algebraic curve with four (real)

singular points, and so it factors as two conics.
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The Ellipse
R0

R1

R2

T+
1

T−
1

T+
2

T−
2

T+
0

T−
0

a(τ ) = ‖v(τ )‖2 =

‖τ2d10 − τ1d20‖2 − ‖d10 ∧ d20‖2

• E := {τ ∈ R2 | a(τ ) = 0};
• E+ := {τ ∈ R2 | a(τ ) > 0};
• E− := {τ ∈ R2 | a(τ ) < 0}.

Proposition

a(τ ) is a degree two polynomial in (τ1, τ2) and:

• E ⊂ P2 is a smooth ellipse with center at 0.

• E is the unique conic tangent to each facet of P2.

• E− is the connected component of R2 \ E containing 0.
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The Cubic
R0

R0
1

R∗

R∗
1

T+
1

T−
1

T+
2

T−
2

T+
0

T−
0

0

b(τ ) = 〈D0(L0(τ )), v(τ )〉 =
〈τ2d10−τ1d20,‖D20(τ )‖2d10−‖D10(τ )‖2d20〉

2‖d10∧d20‖

• C := {τ ∈ R2 | b(τ ) = 0};
• C+ := {τ ∈ R2 | b(τ ) > 0};
• C− := {τ ∈ R2 | b(τ ) < 0}.

Proposition

b(τ ) is a degree three polynomial in (τ1, τ2) and:

• C is the unique cubic curve containing the points
T±0 ,T

±
1 ,T

±
2 ,R

0,R0
1 ,R

∗,R∗1 , 0.

• C is a smooth curve, unless d10 = d20. In this case, C is the
union of a line and a conic.
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The Cubic

• C is a cubic curve with 2–fold rotational symmetry w.r.t. 0,
which is an inflectional point if C is smooth.

• C intersects transversally E and the lines supporting ∂P2.
• The tangent to C at R0,R0

1 ,R
∗,R∗1 are orthogonal to F±0 .

Proposition

If C is smooth, the points T±0 ,T
±
1 ,T

±
2 ,R

0,R∗,R0
1 ,R

∗
1 , 0 belong

to the odd circuit Co of C , while the even circuit Ce (if it exists)
does not intersect P2.
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The Quintic

Given τ ∈ Im(τ2) and a negative solution λ(τ ) of the quadratic
equation, on the x–plane we have

x(τ ) = L0(τ ) + λ(τ ) ∗((τ2d10 − τ1d20) ∧ e3).

The preimage E ′ = τ2
−1(E ) of the ellipse is the bifurcation

curve, which separates the single and double preimage regions.

• On E we have a(τ ) = 0, thus λ(τ ) = −c(τ )/2b(τ ).

• Because of the symmetry, x(τ ) defines a 2 : 1 map E → E ′.

• By ”parametrizing” E via the pencil of lines through 0, we
obtain a parametric representation of E ′ given as ratios of
degree 5 polynomials without common factors.

Theorem
E ′ is a rational degree 5 curve, whose ideal points are the ones
of the lines r0, r1, r2, and the two ones of E .
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The Quintic

E ′
E ′

• E ′ on R2 consists of three disjoint unbounded arcs, one for
each arc of E ∩ Im(τ2), with m0,m1,m2 6∈ E ′.

• E ′ has no self–intersections and it is regularly parameterized.

• In P2
C, the rational quintic curve has singular points.
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The Bifurcation Problem

• Ẽ− = τ2
−1(E−), Ũi = τ2

−1(Ui ) are open subsets separate by E ′.

• τ2 is 1–to–1 on Ẽ−.

• Ũi has two connected components separeted by r
(±)
j , r

(±)
k , and τ2

is 1–to–1 on each of them.

• As τ approaches to ∂P2, τ2
−1(τ ) converges to a point on r±j ∪ r

±
k .

• As τ approaches to E , τ2
−1(τ ) converges to a point on E ′ and to

another at ∞.
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Special Configurations I
Assume that m0,m1,m2 are contained in the straight line r . Let
r0 the smallest line segment containing all the three points, and
r c its complement in r .

m2 m0 m1

r0

rc rc

• rk(J(x)) =


0 if x ∈ r c

1 if x ∈ r0

2 otherwise
.

• If x ∈ A1(τ ) ∩ A2(τ ), then A1(τ ) ∩ A2(τ ) is finite if, and
only if, x ∈ R2 \ r c .

• A1(τ ) and A2(τ ) meet transversally at x if, and only if,
x ∈ R2 \ r .
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Special Configurations II

F−
2

F+
1

F+
2

F−
1

F+
0

F−
0

P2

R0

R1

R2

F−
2

F+
1

F+
2

F−
1

F+
0

F−
0

P2

R0

R1

R2


−d10 ≤ τ1 ≤ d10
−d20 ≤ τ2 ≤ d20
−d21 ≤ τ2 − τ1 ≤ d21

There are two redundant in-
equalities, therefore the polygon
P2 has only four facets.

In the following we assume that m0 is between m1 and m2, that
corresponds to the first polytope.
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Special Configurations III
Linear problem: L(τ ) = Π1(τ ) ∩ Π2(τ ). Then:

• L(τ ) = ∅ if, and only if, d10τ2 + d20τ1 = 0.

• L(τ ) = Π1(τ ) = Π2(τ ) if, and only if, τ = (±d10,∓d20).

• L(τ ) is a line parallel to the x–plane otherwise, with

D0(L0(τ )) =
∗
(
v(τ ) ∧

(
‖D20(τ )‖2D10(τ )− ‖D10(τ )‖2D20(τ )

))
2d2

10(d10τ2 + d20τ1)

v(τ ) = ∗(d10 ∧ e3)

Quadratic problem: ‖v(τ )‖2 > 0, 〈D0(L0(τ )), v(τ )〉 = 0, then

‖v(τ )‖2λ2 + ‖D0(L0(τ ))‖2 = 0.

The line L(τ ) intersect only one half–cones C+
0 ,C

−
0 :

〈D0(L0(τ )), e3〉 > 0.
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Special Configurations IV

E

R0R1

R2

T

Let E be the open segment with
endpoints R1,R2 and T the trian-
gle with side E and vertex R0.

Theorem
Im(τ2) = T \ E

|τ2
−1(τ )| =


∞ if τ ∈ ∂E
2 if τ ∈ T̊

1 otherwise

• τ ∈ E : Π1(τ ),Π2(τ ) are parallel and A1(τ ),A2(τ ) have
parallel asymptotes.

• τ ∈ ∂E : L(τ ) = Π1(τ ) = Π2(τ ) and A1(τ ) ∩ A2(τ ) = r c .

• τ ∈ ∂T \ Ē : L(τ ) is tangent to C−0 and A1(τ ),A2(τ )
intersect at one point on r0, with double multiplicity.

• τ ∈ T̊ : L(τ ) intersects C−0 and A1(τ ),A2(τ ) intersect at
two points symmetric w.r.t. the line r .
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Restoring the Symmetry I

In the definition of the TDOA map we chose m0 as reference
receiver, breaking the symmetry of the problem.

Dj(X, τ ) = D0(X, τ ) + D0j(τ ) Dij(τ ) = Di0(τ ) + D0j(τ )

Theorem

π(C−0 (τ ) ∩ C−1 (τ ) ∩ C−2 (τ )) = π(C−i (τ ) ∩ Πji (τ ) ∩ Πki (τ ))

In particular the three lines L0(τ ), L1(τ ), L2(τ ) coincide.

v0(τ ) = v1(τ ) = v2(τ ).

D0(L0(τ )) 6= D1(L1(τ )) 6= D2(L2(τ )).

The localization does not depend on the choice of the reference
receiver. What does it happen to the Im(τ2) in the τ–space?
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Restoring the Symmetry II

The complete τ2
∗ : R2 −→ R3

TDOA map x 7−→ (τ10(x), τ20(x), τ21(x))

• H = {τ ∗ ∈ R3 | D01(τ ∗) + D12(τ ∗) + D20(τ ∗) = 0};
• P2 = {τ ∗ ∈ H | ‖Dji(τ

∗)‖2 ≥ 0 for every i , j};
• E = {τ ∗ ∈ H | ‖v0(τ ∗)‖2 = 0};
• Ci = {τ ∗ ∈ H | 〈Di(Li(τ

∗), vi(τ
∗)〉 = 0}.

Theorem
Let pi :R3→R2 be the projection forgetting the i-th coordinate.

• H is a plane containing the admissible TDOA triples;

• P2 is a polygon such that p3(P2) = P2;

• E is the ellipse tangent to all the sides of P2 and p3(E) = E;

• Ci is the cubic curve containing E ∩ ∂P2,Ri ,Ri
0,Ri∗,Ri∗

1 , 0.

τ2 = p3 ◦ τ2
∗ and p3 : Im(τ2

∗)←→ Im(τ2)
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The accuracy of the localization

m0

m1

m2

.02

.02

.05

.05

.1

.1

.1

.1

.5

.5

.5

1

1

1
1.5

1.5

1.52

2.5

• | det(J(x))| is the ratio between the areas of two corresponding
infinitesimal regions in the τ and in the x planes. At first order,
the accuracy is best in the regions of maximum of | det(J(x))|.

• The dashed lines are the level sets of | det(J(x))|. The local error
analysis does not take count of the global aspects of localization.
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