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The Boltzmann equation

∂f

∂t
+ ξ · ∂f

∂x
= Q(f, f) (1)

• f(x, ξ, t) is the distribution function for the molecular velocity ξ.

The collision integral is given by

Q(f, f) =

∫

R3

dξ∗

∫ 2 π

0

dǫ

∫ π

0

dΘ [f ′ f ′
∗
− f f∗]B(Θ, V ) (2)

• V = |ξ − ξ∗| is the relative velocity between two molecules

• f is a function of ξ, while f∗ refers to ξ∗

• f ′ ≡ f(ξ′), f ′
∗
≡ f(ξ′

∗
), where ξ′ and ξ′

∗
are the velocities after collision of two

molecules with velocities ξ and ξ∗

• Θ is the angle through which the relative velocity has turned

• ǫ is the azimuthal angle the plane containing the relative velocities before and after
collision makes with a fixed reference plane

• B(Θ, V ) depends on the specific law of interaction between the molecules and is
related to the differential scattering cross section.
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Boundary conditions
n

ξ

ξ’

f(x, ξ, t)|ξ · n̂| =

∫

ξ′·n̂<0

R(ξ′ → ξ; x, t)f(x, ξ′, t)|ξ′ · n̂| dξ′

(x ∈ Ω, ξ · n̂ > 0) (3)

• R(ξ′ → ξ; x, t) is the scattering kernel.

Maxwell Model

R(ξ′ → ξ) = αMw(ξ)|ξ · n̂| + (1 − α)δ(ξ − ξ′ + 2 n̂(ξ′ · n̂))

(ξ · n̂ > 0; ξ′ · n̂ < 0) (4)

• Mw(ξ) is the Maxwellian distribution of the boundary

• α is the accommodation coefficient =⇒ α = 0 (specular reflection), α = 1 (diffuse
reflection).
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The linearized collision operator

Linearized problem

f = f0(1 + h) (5)

• f0 is a Maxwellian distribution (usually with zero bulk velocity)

f0 = ρ0(2πRT0)
−3/2

e
−

ξ2

(2RT0) (6)

where: ρ0 and T0 are the equilibrium density and temperature, respectively, and R is
the gas constant.

• h is the perturbation upon the basic equilibrium state.

Inserting Eq. (5) in (2), the linearized collision operator can be written as follows

Lh = 2 f0
−1Q(f0h, f0) (7)
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In order to obtain Eq. (7), we used the following properties of the collision integral

• Q(f, g) = Q(g, f)

• Q(f0, f0) = 0 if f0 is a Maxwellian

A more explicit expression of Lh reads

Lh =

∫

R3

dξ∗

∫ 2 π

0

dǫ

∫ π

0

dΘ f0(ξ∗) [h′ + h′
∗
− h− h∗]B(Θ, V ) (8)

• h is a function of ξ, while h∗ refers to ξ∗

• h′ ≡ h(ξ′), h′
∗
≡ h(ξ′

∗
)
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The linearized boundary conditions

According to the scattering kernel theory, the boundary conditions for the perturbation
h turn out to be

h+ = h0 +Kh− (9)

where h+ and h− concern, respectively, the reemitted and the impinging molecules.
Eq. (9) is obtained by inserting Eq. (5) in the definition (3). In Eq. (9), the boundary
source term, h0, is given by

h0 = [f0(ξ)|ξ · n̂|]−1

∫

ξ′
·n̂<0

R(ξ′ → ξ)f0(ξ
′)|ξ′ · n̂|dξ′ − 1

(ξ · n̂ > 0) (10)

and K denotes the following operator

Kh− = [f0(ξ)|ξ · n̂|]−1

∫

ξ′
·n̂<0

R(ξ′ → ξ)f0(ξ
′)|ξ′ · n̂|h−(ξ′)dξ′

(ξ · n̂ > 0) (11)
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Kinetic models

When one is not interested in fine details, it is possible to obtain reasonable results by
replacing the collision integral, Q(f, f), by a so-called collision model, a simpler
expression J(f) that retains only the qualitative and average properties of the collision
term.

The equation for the distribution function is then called a kinetic model or a model
equation.

The most widely known collision model is usually called the Bhatnagar, Gross and
Krook (BGK) model.

It reads as follows

J(f) = ν[Φ(ξ) − f(ξ)] (12)

• ν is the collision frequency independent of ξ

• Φ denotes the local Maxwellian, that is, the (unique) Maxwellian having the same
density, bulk velocity and temperature as f .
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An advantage of the BGK model is offered by its linearized form

LhBGK = ν0

[
∫

f̂0(ξ̃)h(ξ̃)dξ̃ +
ξ

RT0
·
∫

ξ̃f̂0(ξ̃)h(ξ̃)dξ̃

+2
3

(

|ξ|2
2RT0

− 3
2

)
∫

( |ξ̃|2
2RT0

− 3

2

)

f̂0(ξ̃)h(ξ̃)dξ̃ − h

]

(13)

• f̂0(ξ̃) =
f0(ξ)
ρ0

• ν0 is the collision frequency evaluated at the density ρ0 and temperature T0 of the
unperturbed state.

The BGK linearized operator can be obtained by inserting Eq. (5) in Eq. (12) and by
approximating the local Maxwellian Φ in terms of f0 and the moments of h.
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Knudsen layers

Knudsen layer

x

v(x)v(o)

macroscopic slip

Microscopic slip: velocity of the gas at the wall v(0).

Macroscopic slip: help us to reconstruct the correct behavior of the bulk velocity
outside the Knudsen layer.

Because of the half-range nature of the boundary conditions, something unusual must happen near a

wall: The molecules arriving there ’do not know’ that there is a wall and have a distribution function that

reflects the presence of a boundary only indirectly (because of the collisions they suffer with the

molecules coming from the wall). It is clear then that, near a wall, there must be a layer, of the order of a

few mean free paths, where the solution is widely different from that prevailing in the remaining part of

the slab. Layers of this kind are called Knudsen layers or kinetic boundary layers .
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The Poiseuille-Couette problem with gas-rarefaction effe cts

α

α
U

T

T

o

o

1

2

h
x

z

Steady-state Boltzmann equation:

cx
∂f

∂x
+ cz

∂f

∂z
= Q(f, f)

Small pressure gradient, small U =⇒ linearized problem:

f = f0(1 + h̃) (14)

• f(x, z, c) is the distribution function for the molecular velocity c expressed in units of
(2RT0)

1/2

• f0 is the Maxwellian in equilibrium with the walls: f0(x, c) = (1 + kx)ρ0π
−3/2e−c2

,

where ρ0 and T0 are the equilibrium density and temperature, respectively, and R is
the gas constant
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• k = 1
p
∂p
∂x

is the pressure gradient

• h̃(z, c) is the perturbation

Using Eq. (14), the linearized Boltzmann equation reads

kcx + cz
∂h̃

∂z
= Lh̃ (15)

Linearized BGK model for molecular collisions:

Lh̃ = (π−3/2/θ)

[
∫

e−c2

1 h̃1dc1 + 2c ·
∫

c1e
−c2

1 h̃1dc1

+ 2
3 (c2 − 3

2 )

∫

(c21 − 3/2)e−c2

1 h̃1dc1

]

− h̃/θ (16)

where h̃1 ≡ h̃(z, c1) and θ is the collision time given by

θ = η

√
2RT0

p

with η being the gas viscosity.
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Multiplying Eq. (15) by (cx/π) exp[−(c2x + c2y)] and integrating with respect to cx and cy ,

it turns out:

1

2
k + cz

∂Z

∂z
=

1

θ

[

π−
1

2

∫ +∞

−∞

e−c2

z1Z(z, cz1
) dcz1

− Z(z, cz)

]

(17)

where by definition:

Z(z, cz) = π−1

∫ +∞

−∞

∫ +∞

−∞

e−c2

x−c2

ycxh̃(z, c) dcx dcy (18)

Hence, the integral equation for the bulk velocity of the gas can be written as follows:

q(z) = π−
1

2

∫ +∞

−∞

e−c2

z1Z(z, cz1
) dcz1

(19)

If one assumes that q(z) is a known quantity, the integrodifferential Boltzmann equation
(17) can be formally handled as an ordinary inhomogeneous differential equation
whose solution reads as
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Z(z, cz) = exp

[

−
(

z + h
2 sgncz

)

/(czθ)

]

Z(−h
2 sgncz, cz) +

∫ z

−
h
2

sgncz

exp

(−|z − t|
|cz|θ

)

[q(t) − kθ/2]/(czθ) dt (20)

with the values at the boundary Z(−(h/2)sgncz, cz) depending on the model of
boundary conditions chosen.

Maxwell boundary conditions:

Z+(h/2, cz) = (1 − α1)Z
−(h/2,−cz)

Z+(−h/2, cz) = α2U + (1 − α2)Z
−(−h/2,−cz)

• Z−(−h/2, cz), Z−(h/2, cz) are the distribution functions of the molecules

impinging upon the walls

• Z+(−h/2, cz), Z+(h/2, cz) are the distribution functions of the molecules
reemerging from the walls
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Inserting in the definition (19) of q(z) the Z function (20), the bulk velocity of the gas
can be rewritten in terms of the nondimensional functions ψp(u) and ψc(u):

q(z) =
1

2
kθ[1 − ψp(u)] + Uψc(u) (21)

Poiseuille Flow

ψp(u) = 1 + 1√
π

∫ δ/2

−δ/2

dwψp(w)

{

(1 − α1)S−1(δ − u− w) + (1 − α2)S−1(δ + u+ w) +

(1 − α1)(1 − α2)[S−1(2δ − u+ w) + S−1(2δ + u− w)] + T−1(|u− w|)
}

Couette Flow

ψc(u) = α2√
π

[

To(δ/2 + u) + (1 − α1)So(3/2δ − u) + (1 − α1)(1 − α2)So(5/2δ + u)

]

+

1√
π

∫ δ/2

−δ/2

dwψc(w)

{

(1 − α1)S−1(δ − u− w) + (1 − α2)S−1(δ + u+ w) +

(1 − α1)(1 − α2)[S−1(2δ − u+ w) + S−1(2δ + u− w)] + T−1(|u− w|)
}
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• Tn(x) is the Abramowitz function defined by

Tn(x) =

∫ +∞

0

tn exp(−t2 − x/t) dt

• Sn(x) is a generalized Abramowitz function defined by

Sn(x, δ, α1, α2) =

∫ +∞

0

tn exp(−t2 − x/t)

1 − (1 − α1)(1 − α2) exp(−2δ/t)
dt

• non-dimensional variables

δ = h/θ, w = t/θ, u = z/θ

where δ is the rarefaction parameter given by δ =
√
π/(2Kn), with Kn = λ/h being the

Knudsen number (λ is the mean free path of the gas molecules).
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The flow rate (per unit time through unit thickness) defined by

F = ρ

∫ h/2

−h/2

q(z)dz

can be expressed as the sum of the Poiseuille flow (Fp) and the Couette flow (Fc) as
follows

F = Fp + Fc = −∂p
∂x
h2Qp(δ, α1, α2) +

ρUh

2
Qc(δ, α1, α2) (22)

where

Qp(δ, α1, α2) = −1

δ
+

1

δ2

∫ δ/2

−δ/2

ψp(u)du

Qc(δ, α1, α2) =
2

δ

∫ δ/2

−δ/2

ψc(u)du

are the non-dimensional volume flow rates.
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Poiseuille velocity profiles

δ = 10−3
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Couette velocity profiles
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Poiseuille flow rate
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Couette flow rate
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• The squares are obtained varying α1 (α2 = 0.5)

• The circles are obtained varying α2 (α1 = 0.5)



Squeezed-film dampers with low oscillation frequency

Micromechanical accelerometers, characterized by very small gaps between the

moving elements and the fixed electrodes, often use a gas as damping medium.

The damping, due to the internal friction of the flowing gas, in the small gaps between

these oscillating microstructures, is an important design parameter since it determines,

e.g., the frequency-domain behavior of the sensor or the quality factor of the vibrating

filter structure.

At low pressures or in ultra thin films, the gas rarefaction effects and the molecular
interaction with the surfaces effectively change the viscosity. Therefore, in this flow
regime, the continuum equations are no longer valid and the Boltzmann equation must
be considered.
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Silicon biaxial accelerometer

In spite of its apparently complex structure, a real micromechanical accelerometer
usually has a highly repetitive layout whose basic units consist of two or
three-dimensional microchannels where different sets of bounding walls move in the
direction perpendicular or parallel to their surfaces.
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Biaxial accelerometer: single unit

Two-dimensional section
y

x

d
d

1

2

L1
L2

d1

Uw

• d1 = 2.6 · 10−6 m; d2 = 4.2 · 10−6 m; L1 = 15 · 10−6 m; L2 = 3.9 · 10−6 m.

• Air viscosity =⇒ η = 1.8 · 10−5 Nsm−2.

Scuola di Dottorato di Ricerca 2012 Micro Electro Mechanical Systems (MEMS) POLITECNICO DI MILANO



Linearized BGK Model for the Boltzmann Equation

Very low Mach number, quasi-static flow field =⇒ linearized problem:

f = f0(1 + h)

• f(x, c) is the distribution function for c expressed in units of (2RT0)
1/2

• f0 is the absolute Maxwellian: f0(c) = ρ0π
−3/2e−c2

• h(x, c) is the small perturbation

• ρ0 and T0 are the equilibrium density and temperature, respectively.

Linearized BGK model for molecular collisions =⇒ the Boltzmann equation reads:

cx
∂h

∂x̃
+ cy

∂h

∂ỹ
= π−3/2

[
∫

e−c′2h(x̃, ỹ, c′)dc′ + 2cx

∫

c′xe
−c′2h(x̃, ỹ, c′)dc′+

2cy

∫

c′ye
−c′2h(x̃, ỹ, c′)dc′

]

− h(x̃, ỹ, c) (23)

• x̃ = x/θ, ỹ = y/θ, with θ being the collision time.
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Multiplying Eq. (23) by (1/
√
π) exp(−c2z) and integrating with respect to cz :

cx
∂

∂x̃
H(x̃, ỹ, cx, cy)+ cy

∂
∂ỹ

H(x̃, ỹ, cx, cy) = −H(x̃, ỹ, cx, cy)+

ρ(x̃, ỹ) + 2cxvx(x̃, ỹ) + 2cyvy(x̃, ỹ) (24)

• H(x̃, ỹ, cx, cy) is the reduced distribution function

H(x̃, ỹ, cx, cy) = π−1/2

∫ +∞

−∞

e−c2

zh(x̃, ỹ, c)dcz

• ρ(x̃, ỹ) is the perturbation part of the density of molecules

ρ(x̃, ỹ) = π−1

∫ +∞

−∞

∫ +∞

−∞

e−(c2

x+c2

y)H(x̃, ỹ, cx, cy) dcxdcy

• vx(x̃, ỹ) is the x-component of the bulk velocity of the gas

vx(x̃, ỹ) = π−1

∫ +∞

−∞

∫ +∞

−∞

cxe
−(c2

x+c2

y)H(x̃, ỹ, cx, cy) dcxdcy

• vy(x̃, ỹ) is the y-component of the bulk velocity of the gas

vy(x̃, ỹ) = π−1

∫ +∞

−∞

∫ +∞

−∞

cye
−(c2

x+c2

y)H(x̃, ỹ, cx, cy) dcxdcy
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Linearized boundary conditions: Maxwell diffusion

H(x̃, ỹ = −L̃2/2 − δ1, cx, cy) = − 2√
π

∫ +∞

−∞

dc′x

∫ 0

−∞

dc′yc
′

ye
−(c′2x+c′2y) ·

H(x̃, ỹ = −L̃2/2 − δ1, c
′

x, c
′

y) cy > 0 (25)

H(x̃, ỹ = −L̃2/2, cx, cy) = (−√
π + 2cy)Uw + 2√

π

∫ +∞

−∞

dc′x

∫ +∞

0

dc′yc
′

ye
−(c′2x+c′2y) ·

H(x̃, ỹ = −L̃2/2, c
′

x, c
′

y) cy < 0 (26)

H(x̃, ỹ = L̃2/2, cx, cy) = (
√
π + 2cy)Uw − 2√

π

∫ +∞

−∞

dc′x

∫ 0

−∞

dc′yc
′

ye
−(c′2x+c′2y) ·

H(x̃, ỹ = L̃2/2, c
′

x, c
′

y) cy > 0 (27)
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H(x̃, ỹ = L̃2/2 + δ1, cx, cy) = 2√
π

∫ +∞

−∞

dc′x

∫ +∞

0

dc′yc
′

ye
−(c′2x+c′2y) ·

H(x̃, ỹ = L̃2/2 + δ1, c
′

x, c
′

y) cy < 0 (28)

H(x̃ = L̃1/2, ỹ, cx, cy) = 2cyUw − 2√
π

∫ +∞

−∞

dc′y

∫ 0

−∞

dc′xc
′

xe
−(c′2x+c′2y) ·

H(x̃ = L̃1/2, ỹ, c
′

x, c
′

y) cx > 0 (29)

H(x̃ = L̃1/2 + δ2, ỹ, cx, cy) = 2√
π

∫ +∞

−∞

dc′y

∫ +∞

0

dc′xc
′

xe
−(c′2x+c′2y) ·

H(x̃ = L̃1/2 + δ2, ỹ, c
′

x, c
′

y) cx < 0 (30)

• L̃1 = L1/θ, L̃2 = L2/θ, δ1 = d1/θ, δ2 = d2/θ
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In order to compute the forces exerted by the fluid on the rotor, the following elements
of the stress tensor have been evaluated:

Pxx(x̃, ỹ) =
ρ0

2
+
ρ0

π

∫ +∞

−∞

∫ +∞

−∞

dcxdcyc
2
xe

−(c2

x+c2

y)H(x̃, ỹ, cx, cy) (31)

Pyy(x̃, ỹ) =
ρ0

2
+
ρ0

π

∫ +∞

−∞

∫ +∞

−∞

dcxdcyc
2
ye

−(c2

x+c2

y)H(x̃, ỹ, cx, cy) (32)

Pxy(x̃, ỹ) =
ρ0

π

∫ +∞

−∞

∫ +∞

−∞

dcxdcycxcye
−(c2

x+c2

y)H(x̃, ỹ, cx, cy) (33)
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Finite-Difference Method

Long-time behavior of the solution of the initial and boundary-value problem:

∂

∂t
H(x̃, ỹ, cx, cy) +cx

∂
∂x̃

H(x̃, ỹ, cx, cy) + cy
∂
∂ỹ

H(x̃, ỹ, cx, cy) = −H(x̃, ỹ, cx, cy) +

ρ(x̃, ỹ) + 2cxvx(x̃, ỹ) + 2cyvy(x̃, ỹ) (34)

• Initial condition =⇒ H = 0

• Boundary conditions =⇒ Eqs. (25)-(30)

Deterministic finite-difference method =⇒ first order implicit scheme:

H(n+1)
i,j (l,m) = [1 + ri(l) + rj(m) + ∆t]−1 × {H(n)

i,j (l,m) + ri(l)H(n+1)
i−s,j (l,m) +

rj(m)H(n+1)
i,j−w(l,m) + ∆t[2cx(l)v

(n)
xi,j + 2cy(m)v

(n)
yi,j + ρ

(n)
i,j ]} (35)

• s = sgn(cx(l)), w = sgn(cy(m))

• ri(l) =
∆t|cx(l)|

∆xi
, rj(m) =

∆t|cy(m)|
∆yj
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In Eq. (35) any quantity in the form q
(n)
i,j (l, m) denotes the value of the corresponding

function q(x, y, t, cx, cy) evaluated in x = xi, y = yj , t = n∆t, cx = cx(l),
cy = cy(m), being xi and yj the spatial coordinates of the center of the i-th cell
whose width is ∆xi and the j-th cell whose width is ∆yj , respectively, ∆t is the time
step, cx(l) and cy(m) are the coordinates of the centers of the cell (l, m) in the

velocity space.

The grid parameters were chosen so as to provide the computational error of the bulk
velocity and density fields within 1%.
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Bulk velocity

−10 0 10 15.65
−6.1

0

6.1

x

y

−6.1

0

6.1

• p = 0.1 bar; Kn ≃ 0.29.



x-component of the bulk velocity: vx
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y-component of the bulk velocity: vy
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Damping forces exerted by the fluid on the rotor
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• Experimental data collected by STMicroelectronics (solid line)

• Numerical findings (circles)



Squeezed-film dampers with high oscillation frequency

d

L’

x’

z’

U
w
’

T

T

0

0

High frequency devices (ranging from a few kHz to tens of MHz) find applications in
inertial sensing, acoustic transduction, optical signal manipulation, and RF (radio
frequency) components.

Besides the viscous forces that dominate at low frequencies, gas compressibility and
inertial forces determine the amount of the damping force at higher oscillation
frequencies.

We consider a monoatomic gas between two plane walls located at z′ = ±d/2.
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Linearized BGK Model for the Boltzmann Equation

At t′ = 0 the lower wall starts to oscillate perpendicularly to its own plane in the
z′-direction with velocity

U ′

w(t′) = U ′

0 sin(ω′t′)

We assume that U ′

0 is small enough

U ′

0 <<
√

2RT0 =⇒ small Mach number

so that the governing equations and the boundary conditions can be linearized about a
Maxwellian f0 by putting

f = f0(1 + h)

• f(x′, z′, c, t′) is the distribution function for c expressed in units of (2RT0)
1/2

• f0 is the absolute Maxwellian: f0(c) = ρ0π
−3/2e−c2

• h(x′, z′, c, t′) is the small perturbation

• ρ0 is the equilibrium density.

Scuola di Dottorato di Ricerca 2012 Micro Electro Mechanical Systems (MEMS) POLITECNICO DI MILANO



Rescaling all variables

t =
t′

θ
, x =

x′

(2RT0) θ
, z =

z′

(2RT0) θ

( with θ being the collision time)

the linearized BGK-Boltzmann equation reads:

∂h

∂t
+ cx

∂h

∂x
+ cz

∂h

∂z
= ρ+ 2c · v + (c2 − 3/2) τ − h (36)

where

ρ = π−3/2

∫ +∞

−∞

h e−c
2

dc, (37)

v = π−3/2

∫ +∞

−∞

h c e−c
2

dc, (38)

τ = π−3/2

∫ +∞

−∞

h (
2

3
c
2 − 1) e−c

2

dc, (39)
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First, we multiply Eq. (36) by [1/
√
π exp(−c2y)] and we integrate over all cy ; then, we

multiply Eq. (36) by [1/
√
π(c2y − 1/2) exp(−c2y)] and we integrate over all cy (projection

procedure):

∂H

∂t
+ cx

∂H

∂x
+ cz

∂H

∂z
+H = ρ+ 2 cx vx + 2 cz vz + (c2x + c2z − 1) τ (40)

∂Ψ

∂t
+ cx

∂Ψ

∂x
+ cz

∂Ψ

∂z
+ Ψ =

τ

2
(41)

where the reduced unknown distribution functions H and Ψ are defined as

H(x, z, cx, cz, t) =
1√
π

∫ +∞

−∞

h(x, z, c, t) e−c2

y dcy (42)

Ψ(x, z, cx, cz, t) =
1√
π

∫ +∞

−∞

h(x, z, c, t) (c2y − 1/2) e−c2

y dcy (43)
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In order to derive Eqs. (40) and (41), we have considered the linearized equation of
state

P =
1

3

[

Pxx + Pyy + Pzz

]

=
1

2
(ρ+ τ) (44)

with P being the dimensionless perturbed pressure of the gas.

The macroscopic quantities appearing in the right-hand side of Eqs. (40) and (41) are
defined by

ρ(x, z, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞

H e−(c2

x+c2

z) dcxdcz (45)

vx(x, z, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞

H cx e
−(c2

x+c2

z) dcxdcz (46)

vz(x, z, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞

H cz e
−(c2

x+c2

z) dcxdcz (47)

τ(x, z, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞

2

3

[

(c2x + c2z − 1)H + Ψ

]

e−(c2

x+c2

z) dcxdcz (48)
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Linearized boundary conditions: Maxwell diffusion (α = 1)

H(x, z = −δ/2, cx, cz, t) = (
√
π + 2 cz)Uw

− 2√
π

∫

∞

−∞

dc̃x

∫

c̃z<0

dc̃z c̃z e
−(c̃2

x+c̃2

z)H(x, z = −δ/2, c̃x, c̃z, t) cz > 0

Ψ(x, z = −δ/2, cx, cz, t) = 0 cz > 0

H(x, z = δ/2, cx, cz, t) = 2√
π

∫

∞

−∞

dc̃x ·
∫

c̃z>0

dc̃z c̃z e
−(c̃2

x+c̃2

z)H(x, z = δ/2, cx, cz, t) cz < 0

Ψ(x, z = δ/2, cx, cz, t) = 0 cz < 0
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• δ = d/(
√

2RT0 θ) is the rarefaction parameter (inverse Knudsen number)

• Uw is the dimensionless wall velocity given by Uw(t) = U0 sin(ω t)

with Uw = U ′

w/
√

2RT0, U0 = U ′

0/
√

2RT0, ω = θ ω′, T = 2π/ω = T ′/θ.

In order to compute the forces exerted by the gas on the moving wall, the following
elements of the stress tensor have to be evaluated at z = −δ/2

Pzz(x, z, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞

H c2z e
−(c2

x+c2

z) dcxdcz (49)

Pxz(x, z, t) =
1

π

∫ +∞

−∞

∫ +∞

−∞

H cx cz e
−(c2

x+c2

z) dcxdcz (50)

The dominant contribution is given by the component Pzz .
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The numerical results show that above a certain frequency of oscillation, the sound
wave propagation takes place only in the z-direction across the gap, which indicates a
fully trapped gas situation.

This assumption greatly simplifies the analysis since the topology of the damper
becomes insignificant and the problem can be reduced to a 1-dimensional one.

To demonstrate the gas trapping in the channel gap at high frequencies, the following
Figures show the variations of the macroscopic fields of interest along the channel for
different periods of oscillation.

The profiles reported in these pictures (at different stages during a period of oscillation

after the transient behavior has ended) show clearly that, at high frequencies, the bulk
flow velocity in the x-direction, vx, and the xz-component of the stress tensor, Pxz , are
zero (except very close to the borders, due to channel end effects) and the other
macroscopic quantities (vz and Pzz) do not depend on x.

As frequencies decrease, the two-dimensional character of the flow field can not be
neglected and a full 2D description becomes mandatory in order to capture the correct
magnitude of the macroscopic fields.
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Low frequency MEMS devices are normally operated at very low pressure in order to
minimize the damping due to gas flow in the small gaps between the moving parts of
these microstructures. This need can be overcome when MEMS devices vibrate at

relatively high frequencies, since gas compressibility and inertial forces lead then to
another damping mechanism (in addition to the viscous damping that dominates at low
frequencies).

In particular, inertial forces will cause a gas resonance in the z-direction when the
dimensionless distance between the channel walls (measured in units of the oscillation
period of the moving plate)

L =
δ

v0 T
=

dω′

2π v0
(51)

takes a well-defined fixed value (with v0 being the thermal velocity
√

2RT0).

Note that the quantity (2π v0/ω
′) is the distance traveled by gaseous molecules during

one cycle of oscillation of the moving boundary.
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In correspondence with a resonant response of the system, the amplitude of Pzz at
z = −δ/2 reaches its maximum value (resonance) or its minimum value

(antiresonance).



Profiles of the normal stress amplitude at the moving wall
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The thermal effects do not play any role at high frequency T ≤ 1.
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The damping force has a minimum at the first antiresonance fre quency.
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