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OPTIMAL COVARIANT MEASUREMENTS: THE CASE OF A COMPACT

SYMMETRY GROUP AND PHASE OBSERVABLES

CLAUDIO CARMELI, TEIKO HEINOSAARI, JUHA-PEKKA PELLONPÄÄ, AND ALESSANDRO TOIGO

Abstract. We study various optimality criteria for quantum observables. Observables are
represented as covariant positive operator valued measures and we consider the case when the
symmetry group is compact. Phase observables are examined as an example.

1. Introduction

In this work we study four optimality criteria applied on covariant quantum observables.
Quantum observables are described as normalized positive operator valued measures. Co-
variance means that observables transform in a consistent way under a group operation. For
example, phase observables are defined as the normalized positive operator measures on a circle
which are covariant under the phase shifts.

A quantum observable can be optimal in various ways. There are at least four different ways
how optimality can be defined. Namely, an observable can be

(a) (approximately) sharp
(b) extremal
(c) postprocessing clean
(d) preprocessing clean

If an observable is (approximately) sharp then for any neighborhood of a point from the set of
possible measurement outcomes, one can prepare a state such that the probability of getting a
result from the neighborhood is (approximately) 1. This reflects the fact that an approximately
sharp observable does not have intrinsic unsharpness – spread in the measurement outcome
distribution depends solely on the measured state.

A covariant observable is extremal in the convex set of all covariant observables if it cannot
be represented as a nontrivial convex combination of other covariant observables. A convex
mixture of observables corresponds to a random choice between measurement apparatuses, and
thus an extremal observable is unaffected by this kind of randomness.

After a measurement of an observable, one may try to process the obtained measurement
outcome data to get the measurement outcome data of another observable. An observable is
called postprocessing clean if it cannot be obtained by manipulating the measurement outcome
data of another observable.
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Analogously, a preprocessing clean observable cannot be obtained by manipulating the state
before the measurement and then measuring some other observable. State manipulation is
described by a quantum channel, which typically loses some information. Hence, a preprocessing
clean observable is not irreversibly connected to another observable by a channel.

In Section 2 we formulate the optimality criteria and derive some general results in the case
of a compact symmetry group. In Section 3 we focus on the phase observables. The phase
observables form an interesting class as there is no sharp phase observable (i.e. projection
valued measure). This class is also a rich example for the general investigation on optimal
observables, showing various connections and differences between the four optimality criteria.

2. Optimal covariant observables

2.1. Basic definitions. In quantum mechanics, observables are represented as normalized
positive operator valued measures. We shortly recall some relevant basic concepts. For more
details, we refer to [2], [6], [13].

Let H be a complex separable Hilbert space. We denote by L(H) the set of bounded operators
and T (H) the set of trace-class operators on H. We denote by O and I be the zero and indentity
operators on H, respectively. Let Ω be a topological space. We denote by B(Ω) the Borel σ-
algebra on Ω.

Definition 1. A set function E : B(Ω) → L(H) is an observable if it satisfies the following
conditions:

• O ≤ E(X) ≤ I for any X ∈ B(Ω);
• E(Ω) = I;
• E(∪iXi) =

∑

i E(Xi) for any sequence {Xi} of disjoint Borel sets, the sum converging
in the weak operator topology.

The set Ω is called the outcome set of E.
Two observables E and F are called equivalent, and denoted E ∼ F, if there exists a unitary

operator W ∈ L(H) such that F(X) = WE(X)W ∗ for all X ∈ B(Ω).

States of a quantum system are described by (and identified with) positive trace class oper-
ators of trace 1. We denote by S(H) the convex set of all states. If E is an observable and ̺ is
a state, then the trace formula

pE

̺(X) := tr [̺E(X)] , X ∈ B(Ω),

defines a probability measure pE

̺ on B(Ω). The number pE

̺(X) is interpreted as the probability
of getting a measurement outcome x belonging to X, when the system is in the state ̺ and the
observable E is measured.

There is also an equivalent description of observables which we need later. Namely, an
observable E determines a mapping ΘE from the set of states S(H) into the set of probability
measures M+

1 (Ω),

̺ 7→ ΘE(̺) := pE

̺ .



OPTIMAL PHASE OBSERVABLES 3

The mapping ΘE is affine, i.e., it maps convex combinations of states to convex combinations
of corresponding probability measures.

In this paper we study observables which have a specific symmetry property, called covariance.
To formulate this concept, let G be a topological group. For simplicity, here we consider only
the case where G is the symmetry group and also the outcome space. (This corresponds to the
situation when the symmetry group acts transitively on the outcome space Ω and the stability
subgroup is the trivial one element group consisting of the identity element e only.) By a
unitary representation of G we mean a strongly continuous group homomorphism from G to
the group U(H) of unitary operators in a Hilbert space H.

Definition 2. Let U be a unitary representation of G in a Hilbert space H. An observable
E : B(G) → L(H) is covariant with respect to U (or U-covariant, for short) if

U(g)E(X)U(g)∗ = E(gX)

for all g ∈ G and X ∈ B(G).
Two U -covariant observables E and F are called U-equivalent, and denoted E ∼U F, if there

exists a unitary operator W ∈ L(H) such that U(g)W = WU(g) for all g ∈ G and F(X) =
WE(X)W ∗ for all X ∈ B(G).

Covariance of observables arises in many different situations; we refer to [2], [11] for many
examples. Trivially, for two U -covariant observables E and F, the equivalence E ∼U F implies
that E ∼ F but, as we will show later (see Proposition 10), E ∼ F does not necessarily imply
that E ∼U F.

In the rest of this paper, G is a compact topological group which is Hausdorff and satisfies
the second axiom of countability. We denote by µ the Haar measure of G, normalized so that
µ(G) = 1. We fix a unitary representation U of G, and the set of all U -covariant observables is
denoted by O.

2.2. Approximately sharp observables. Suppose for a moment that E : B(G) → L(H) is
a projection valued observable, also called a sharp observable. Then for any X ∈ B(G) with
E(X) 6= O, we can choose a (pure) state ̺ ∈ S(H) such that tr [̺E(X)] = 1. This means that
we can prepare the system in a state ̺ such that the probability of getting an outcome x ∈ X
is 1.

This property of sharp observables is a simple consequence of the fact that each non-zero
operator E(X) has eigenvalue 1. Especially, ‖E(X)‖ = 1. This gives a useful generalization of
sharp observables [9],[13].

Definition 3. An observable E : B(G) → L(H) is approximately sharp if ‖E(X)‖ = 1 for every
open set X ⊆ G such that E(X) 6= O.

Let us first note that the condition ‖E(X)‖ = 1 does not imply that tr [̺E(X)] = 1 for some
state ̺. Indeed, ‖E(X)‖ = 1 means that 1 is in the spectrum of E(X) but 1 need not be an
eigenvalue. The condition ‖E(X)‖ = 1 is equivalent to the fact that there exists a sequence
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{̺n}n∈N of (pure) states such that

lim
n→∞

tr [̺nE(X)] = 1 .

Therefore, approximate sharpness means that we can prepare the system in a state ̺n such
that the probability of getting an outcome from X is arbitrarily close to 1.

Now, assume that E is a U -covariant observable. Then E(X) = O if and only if µ(X) = 0;
see [9]. On the other hand, µ(X) > 0 for any (non-empty) open set X ⊆ G. Thus, E is
approximately sharp if ‖E(X)‖ = 1 for every open set X ⊆ G, X 6= ∅.
Proposition 1. Let E, F ∈ O and E ∼ F. If E is approximately sharp, then also F is such.

Proof. Since E ∼ F, there is a unitary operator W such that F(X) = WE(X)W ∗ for every
X ∈ B(G). This implies that the operator norms of E(X) and F(X) are the same, i.e., ‖F(X)‖ =
‖WE(X)W ∗‖ = ‖E(X)‖. �

Until now, it may seem that the concept of an approximately sharp observable is quite
artificial. The usefulness and importance of this concept becomes evident in the situations when
there are no sharp observables in the set O, but there exist approximately sharp observables
in O. This is the case for phase observables, which we will study in Section 3.

2.3. Extremal observables. The set of all U -covariant observables O is convex, and we denote
by ExtO the set of extremal elements of O. A convex mixture of two observables corresponds to
a random choice or fluctuation between two measurement apparatuses. An extremal observable
thus describes an observable which is unaffected by this kind of randomness.

In our earlier article [3] we have characterized the extremal observables in O. We do not
reproduce this characterization here but we use it in the special case of phase observables in
Section 3.5. Extremality and approximate sharpness have the following simple connection.

Proposition 2. Let E,E1,E2 be three observables and assume that E is a convex combination
of E1 and E2. If E is approximately sharp, then also E1 and E2 are approximately sharp.

Proof. Let X ⊆ G be an open set. As E is a convex combination of E1 and E2, we have
E(X) = λE1(X) + (1 − λ)E2(X) for some 0 < λ < 1. By the triangle inequality, we get

‖E(X)‖ ≤ λ ‖E1(X)‖ + (1 − λ) ‖E2(X)‖ ≤ 1 .

Thus, if ‖E(X)‖ = 1, then ‖E1(X)‖ = ‖E2(X)‖ = 1. �

2.4. Postprocessing. Let M+
1 (G) be the convex set of probability measures on B(G). As we

earlier discussed, each observable E defined on B(G) determines an affine mapping ΘE from
S(H) to M+

1 (G).

Definition 4. Let E, F ∈ O. We say that F is a postprocessing of E, and denote F 4post E, if
there exists an affine mapping Ψ : M+

1 (G) →M+
1 (G) such that

(1) ΘF = Ψ ◦ ΘE .
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The relation 4post on O is reflexive and transitive, thus a preorder. We denote by
post∼ the

induced equivalence relation, i.e., E
post∼ F if and only if F 4post E 4post F.

Definition 5. An observable E ∈ O is postprocessing clean in O if for every F ∈ O, the
following implication holds:

(2) E 4post F ⇒ E
post∼ F .

The postprocessing relation and postprocessing cleaness have been studied in [1], [6], [8], [15],
[21]. Some connections with the convex structure of the set of observables and the postprocess-
ing relation were proved in [14]. In the following we derive some results for the postprocessing
relation in the case of covariant observables.

For each probability measure ν on G, we define a mapping Ψν : M+
1 (G) →M+

1 (G) by

(3) Ψν(p) = ν ∗ p .
Here ν ∗ p denotes the convolution of these measures, i.e.,

(ν ∗ p)(X) =

∫

ν(g−1X) dp(g) , X ∈ B(G) .

For E ∈ O and ν ∈M+
1 (G), we denote by Eν the observable corresponding to the affine mapping

Ψν ◦ ΘE. In other words, Eν is the observable defined by formula

(4) Eν(X) =

∫

ν(g−1X) dE(g) , X ∈ B(G) .

By its definition, Eν is a postprocessing of E. It is straightforward to check that the U -covariance
of E implies that also Eν is U -covariant.

Proposition 3. Let E, F ∈ O. The following conditions are equivalent:

(i) F 4post E .
(ii) There is a probability measure ν such that F = Eν .

Proof. As explained previously, (ii) implies (i).
Conversely, suppose Ψ : M+

1 (G) →M+
1 (G) is an affine mapping such that Eq. (1) holds. The

mapping Ψ extends uniquely to a bounded linear mapping Ψ : M(G) → M(G), where M(G)
is the Banach space of Borel complex measures on G, by setting

Ψ(m) = ‖m1+‖Ψ

(

m1+

‖m1+‖

)

− ‖m1−‖Ψ

(

m1−
‖m1−‖

)

+i ‖m2+‖Ψ

(

m2+

‖m2+‖

)

− i ‖m2−‖Ψ

(

m2−
‖m2−‖

)

.

Here m = m1+ −m1− + im2+ − im2− is the Lebesgue decomposition of a measure m and ‖m‖
is the total variation norm of m ∈M(G) (in the above formula, 0/0 = 0 is assumed).

For each g ∈ G, we define the following linear isometric isomorphism Λg : M(G) → M(G)
∫

G

f(h) d(Λgm)(h) :=

∫

f(gh) dm(h) ∀f ∈ C0(G) .



6 CARMELI, HEINOSAARI, PELLONPÄÄ, AND TOIGO

The mapping g 7→ Λgm is weak*-continuous, and it is norm continuous if m ∈ L1(G). In this
case, the mapping g 7→ ΛgΨΛg−1m is weak*-continuous. In fact, if f ∈ C(G), then

∣

∣

∣

∣

∫

f(x) d(ΛgΨΛg−1m)(x) −
∫

f(x) d(ΛhΨΛh−1m)(x)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

f(gx) d(ΨΛg−1m− ΨΛh−1m)(x)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

[f(gx) − f(hx)] d(ΨΛh−1m)(x)

∣

∣

∣

∣

≤ ‖f‖∞ ‖ΨΛg−1m− ΨΛh−1m‖M + ‖f(g·) − f(h·)‖∞ ‖ΨΛh−1m‖M

≤ ‖f‖∞ ‖Ψ‖ ‖Λg−1m− Λh−1m‖
M

+ ‖f(g·) − f(h·)‖∞ ‖Ψ‖ ‖m‖M ,

and the mappings g 7→ Λg−1m and g 7→ f(g·) are both norm continuous.
If m ∈ L1(G), then for all f ∈ C(G) the mapping g 7→

∫

f(x) d(ΛgΨΛg−1m)(x) is µ-
integrable, and we have

∣

∣

∣

∣

∫
[
∫

f(x) d(ΛgΨΛg−1m)(x)

]

dg

∣

∣

∣

∣

≤ ‖f‖∞ ‖Ψ‖ ‖m‖M .

This shows that there exists a measure Ψ̆m ∈M(G) such that
∫

[
∫

f(x) d(ΛgΨΛg−1m)(x)

]

dg =

∫

f(x) d(Ψ̆m)(x) ∀f ∈ C(G),

and the linear mapping m 7→ Ψ̆m is bounded from L1(G) into M(G).
Suppose m ∈ L1(G) ∩M+

1 (G). If {fn}n∈N ⊂ C(G) is such that fn ≥ 0 and fn ↑ 1, then
∫

fn(x) d(ΛgΨΛg−1m)(x) ↑ 1 since ΛgΨΛg−1m ∈ M+
1 (G). Therefore,

∫

fn(x) d(Ψ̆m)(x) ↑ 1 by

dominated convergence theorem, thus showing that Ψ̆m ∈M+
1 (G).

Clearly, ΛgΨ̆m = Ψ̆Λgm for all m ∈ L1(G). In particular, the map g 7→ ΛgΨ̆m is continuous,

hence Ψ̆m ∈ L1(G) by Theorem 1.6 in [24] (which is unaltered even if G is not Abelian). By a

result of Wendel [26], there exists ν ∈M+
1 (G) such that Ψ̆(φ) = ν ∗ φ for all φ ∈ L1(G).

Since ΘE(S(H)),ΘF(S(H)) ⊆ L1(G) (see e.g. [9]), and ΛgΘF = ΨΛgΘE by covariance of E

and F, we have ΘF = Ψ̆ ◦ ΘE. We conclude that F = Eν , and thus, (i) implies (ii). �

Let the probability measure ν in (4) be the Dirac measure δx in some point x ∈ G. In this
case, the corresponding observable Eδx

has the form

(5) Eδx
(X) = E(Xx−1) ≡ Ex(X) .

This observable, which we denote by Ex, is therefore just a translated version of E. It is clear

that E
post∼ Ex. If G is an Abelian group, then Ex(X) = E(x−1X) = U(x−1)E(X)U(x) and

therefore Ex ∼U E.

Proposition 4. Let E ∈ O and ν ∈M+
1 (G). The following conditions are equivalent:

(i) Eν is approximately sharp.
(ii) E is approximately sharp and ν = δx for some x ∈ G (i.e. Eν = Ex).
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Proof. Let us first note that since G is Hausdorff and second countable, it is metrizable and we
can choose a left invariant metric d for G, i.e., d(gx, gy) = d(x, y) for every g, x, y ∈ G (see, for
instance, Theorem 8.3 in [10] for this fact).

Suppose that (i) holds. We make a counter assumption that ν is not a Dirac measure,
i.e., there are two different points x, y in the support of ν. Denote r := 1

5
d(x, y). Then

the open balls B(x; r) and B(y; r) are disjoint and have positive ν-measure. Thus, if we set
α = min{ν(B(x; r)), ν(B(y; r))}, then α > 0. As the metric d is left invariant, we have
gB(x; r) = B(gx; r) for any g ∈ G. Moreover, for any g ∈ G, we have B(gx; r) ∩ B(x; r) = ∅
or B(gx; r) ∩ B(y; r) = ∅. This implies that ν(gB(x; r)) ≤ 1 − α for all g ∈ G. It then follows
that

‖Eν(B(x; r))‖ =

∥

∥

∥

∥

∫

G

ν(g−1B(x; r)) dE(g)

∥

∥

∥

∥

≤ sup
g∈G

ν(g−1B(x; r)) · ‖E(G)‖ ≤ 1 − α < 1.

This is in contradiction with our assumption that (i) holds. Hence, ν is the Dirac measure δx
for some point x ∈ G. For every x ∈ G and X ∈ B(G), we have

(6) ‖Eδx
(Xx)‖ = ‖E(X)‖ .

Therefore, ‖E(X)‖ = 1 for every open set X ⊆ G since the right multiplication is a homeomor-
phism. This shows that (i)⇒(ii).

The fact that (ii)⇒(i) is clear from (6). �

As a consequence of Propositions 3 and 4, we get the following result.

Proposition 5. Let E ∈ O be an approximately sharp observable. Then E is postprocessing
clean in O. Another observable F ∈ O is postprocessing equivalent with E if and only if F = Ex

for some x ∈ G.

Proof. Let E ∈ O be an approximately sharp observable. If F ∈ O is such that E 4post F, then
by Prop. 3 we have E = Fν for some ν ∈M+

1 (G). But Prop. 4 now implies that ν = δx for some

x ∈ G, which means, in particular, that E
post∼ F. Therefore, E is postprocessing clean. This

reasoning also proves the second claim. �

2.5. Preprocessing. Let Φ : T (H) → T (H) be a linear mapping such that its adjoint Φ∗ :
L(H) → L(H) is completely positive and Φ∗(I) = I. We say that Φ is a channel and denote
the set of all channels by Ch(H). Let Ch(H)∗ be the set of the adjoints of channels, that is,
Ch(H)∗ consists of normal completely positive maps Ξ : L(H) → L(H) such that Ξ(I) = I.

Definition 6. Let E, F ∈ O. We say that F is a preprocessing of E, and denote F 4pre E, if
there exists a channel Φ : T (H) → T (H) such that

(7) ΘF = ΘE ◦ Φ.

Written in terms of the adjoint channel Φ∗, Eq. (7) amounts to say that F(X) = Φ∗(E(X))
for all X ∈ B(G).

The relation 4pre on O is clearly a preorder and we denote by
pre∼ the induced equivalence

relation.
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Definition 7. An observable E ∈ O is preprocessing clean in O if for every F ∈ O, the following
implication holds:

(8) E 4pre F ⇒ E
pre∼ F .

We have some simple connections of the preprocessing relation to the other relations.

Proposition 6. If E, F ∈ O and E ∼ F, then E
pre∼ F.

Proof. The relation E ∼ F means that F(·) = WE(·)W ∗ for some unitary operator W . Define
unitary channels Φ1(T ) = W ∗TW and Φ2(T ) = WTW ∗. Then ΘF = ΘE◦Φ1 and ΘE = ΘF◦Φ2.

Hence, E
pre∼ F. �

Proposition 7. Let E, F ∈ O and F 4pre E. If F is approximately sharp, then also E is
approximately sharp.

Proof. For any X ∈ B(Ω), we get

‖F(X)‖ = sup
̺∈S(H)

tr [̺F(X)] = sup
̺∈S(H)

tr [Φ(̺)E(X)] ≤ sup
̺∈S(H)

tr [̺E(X)] = ‖E(X)‖ .

Thus, ‖F(X)‖ = 1 implies that ‖E(X)‖ = 1. �

A channel Φ is called U -covariant if

(9) Φ(U(g)̺U(g)∗) = U(g)Φ(̺)U(g)∗

for every ̺ ∈ S(H) and g ∈ G.

Proposition 8. Let E, F ∈ O and F 4pre E. Then there is a U-covariant channel Φ such that
(7) holds.

Proof. Let Φ be a channel such that (7) holds. Since E and F are covariant, we have

(10) ΘF(U(g)∗̺U(g)) = ΘE(U(g)∗Φ(̺)U(g))

for every ̺ ∈ S(H) and g ∈ G. We define a linear mapping Φ̆ : T (H) → T (H) by setting

(11) Φ̆(̺) =

∫

U(g)Φ(U(g)∗̺U(g))U(g)∗ dg .

Let Φ∗ and Φ̆∗ be the adjoints of Φ and Φ̆. Hence,

(12) Φ̆∗(A) =

∫

U(g)Φ∗(U(g)∗AU(g))U(g)∗ dg , A ∈ L(H) .

The fact that Φ∗ is completely positive equals with

(13)

n
∑

i,j=1

〈ψi|Φ∗(A∗
iAj)ψj〉 ≥ 0
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for all n = 1, 2, ..., A1, ..., An ∈ L(H), and ψ1, ..., ψn ∈ H. Since

n
∑

i,j=1

〈ψi|Φ̆∗(A∗
iAj)ψj〉 =

∫

[

n
∑

i,j=1

〈U(g)∗ψi|Φ∗((AiU(g))∗(AjU(g))
)

U(g)∗ψj〉
]

dg ≥ 0

it follows that Φ̆∗ is completely positive. But Φ̆∗(I) = I so that Φ̆ is a channel. Using

the invariance of the Haar integral, it is straightforward to verify that Φ̆ is U -covariant. By
Eq. (10), ΘF = ΘE ◦ Φ̆. �

Proposition 8 shows that the investigation of the preprocessing relation reduces to the study
of covariant channels. We will need the following general result in order to characterise the set
of U -covariant elements in Ch(H)∗. For a proof, see e.g. [4].

Proposition 9. Suppose U is a unitary representation of G in a Hilbert space H, and Ξ ∈
Ch(H)∗ is a U-covariant channel. There exists a separable Hilbert space K, a unitary represen-
tation D of G in K, and an isometry W : H → K⊗H such that

WU(g) = (D(g) ⊗ U(g))W ∀g ∈ G ,

Ξ(A) = W ∗(I ⊗A)W ∀A ∈ L(H) .(14)

We apply Proposition 9 in Section 3.7 in the study of phase observables.

3. Optimal phase observables

3.1. Structure of phase observables. Let H be a complex Hilbert space with an orthonormal
basis {|n〉 |n ∈ N}, N = {0, 1, 2, ...}. We define the lowering, raising, and number operators as

a :=

∞
∑

n=0

√
n+ 1 |n 〉〈n+ 1|, a∗ :=

∞
∑

n=0

√
n + 1 |n+ 1 〉〈n|, N := a∗a =

∞
∑

n=0

n |n 〉〈n|,

respectively. Physically the Hilbert space H and the above operators are associated with a
single-mode optical field. The vectors |n〉 are called number states.

Coherent states |z〉 := e−|z|2/2
∑∞

n=0
zn

√
n!
|n〉, where z ∈ C, describe laser light which is quasi-

monochromatic and thus can be approximated as a single-mode system; here |z| is the energy
and arg z is the phase parameter of |z〉.

An observable E describing a phase parameter measurement should have the interval [0, 2π)
as its outcome space. For convenience, we use one dimensional torus T = {t ∈ C : |t| = 1} as
an equivalent description. Let |z〉 be a coherent state and t ∈ T. Then |tz〉 is another coherent
state, now having phase parameter arg z + arg t (addition modulo 2π). Therefore, we require
that E describing a phase parameter measurement satisfies the condition

(15) pE

|tz〉(X) = pE

|z〉(t
−1X)

for all z ∈ C, t ∈ T and X ∈ B(T).
As shown in [20], an observable E : B(T) → L(H) satisfies condition (15) if and only if

(16) U(t)E(X)U(t)∗ = E(tX)
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for all t ∈ T and X ∈ B(T), where U is the number representation of T in H, i.e.,

U(t)|n〉 = tn|n〉 ∀n ∈ N.

Clearly, U(t)|z〉 = |tz〉 We take this covariance condition as the definition for phase observables.

Definition 8. An observable E : B(T) → L(H) is a phase observable if it satisfies the covariance
condition (16).

The following phase theorem characterizing phase observables has been proved in various
different methods in [5, 12, 18].

Theorem 1 (Phase Theorem). An observable E : B(T) → L(H) is a phase observable if and
only if

〈m|E(X)|n〉 = cm,n

∫

X

tm−ndt = cm,n

∫

arg X

ei(m−n)θ dθ

2π
∀m,n ∈ N ,

where the phase matrix (cm,n) is a positive semidefinite complex N×N-matrix and cn,n = 1 for
all n ∈ N.

If E1, E2 are phase observables with phase matrices (c1m,n) and (c2m,n), then E1 ∼U E2 if and

only if there exists a sequence {λn}n∈N ∈ T such that c1m,n = λnλmc
2
m,n.

Using Theorem 1 we can easily see some general properties of phase observables. For in-
stance, the probability measure pE

|n〉 of a phase observable E in a number state |n〉 is uniformly
distributed, which is expected as number states do not have specific phase. Also, a phase
observable is never sharp (a projection valued measure); see e.g. [18].

We notice that U -equivalence for two phase observables is, in general, stronger requirement
than equivalence. This is demonstrated in the following proposition.

Proposition 10. There exist phase observables E1 and E2 such that E1 is equivalent to E2, but
E1 is not U-equivalent to E2.

Proof. Fix z ∈ C, 0 < |z| < 1, and define phase observables E1 and E2 by setting

E1(X) =

∫

X

dt I + z

∫

X

t−1dt |0 〉〈 1|+ z

∫

X

t dt |1 〉〈 0| ,

E2(X) =

∫

X

dt I + z

∫

X

t−1dt |2 〉〈 3|+ z

∫

X

t dt |3 〉〈 2|

for all X ∈ B(T). Define a unitary operator W as

W = |2 〉〈 0|+ |0 〉〈 2|+ |1 〉〈 3|+ |3 〉〈 1|+
∞

∑

n=4

|n 〉〈n| .

Then E2 = WE1W
∗. From Theorem 1 one sees easily that E1 and E2 cannot be U -equivalent. �
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3.2. Canonical phase observable. The canonical phase observable Ecan is the phase observ-
able determined by the phase matrix cm,n = 1 for all m, n ∈ N. If E is another phase observable
with a phase matrix (cm,n), then E ∼U Ecan if and only if |cm,n| = 1 for all m, n ∈ N; see [19].

The canonical phase observable Ecan has some properties which make it special among all
phase observables. For example, it is the only phase observable (up to equivalence) which
generates the number shifts [19]. A drawback of Ecan is that a realistic measurement scheme
for it is not known.

We will see that Ecan is optimal phase observable in all the four different ways we listed in
Section 1. However, (perhaps surprisingly) it is not the unique phase observable having this
feature.

3.3. State generated phase observables. Let D(z) := eza∗−za, z ∈ C, be the shift operator,
and denote by S(H)diag the convex set of all diagonal states, that is, the states of the form
T =

∑∞
n=0 λn|n〉〈n|, where λn ≥ 0 for all n ∈ N and

∑∞
n=0 λn = 1. Obviously, the extremal

elements of S(H)diag are the one-dimensional projections of the form |n 〉〈n|, n ∈ N.
The phase observable generated by T ∈ S(H)diag (or a phase space phase observable), denoted

by ET , is defined by

(17) ET (X) =
1

π

∫

arg X

∫ ∞

0

D
(

reiθ
)

TD
(

reiθ
)∗
r dr dθ (weakly)

for all X ∈ B(T) [18]. Using the decompostion of T , one gets

ET (X) =
∞

∑

n=0

λnE|n〉(X) (weakly) for all X ∈ B(T),

where we have denoted E|n 〉〈n| briefly by E|n〉. Note that the operator T in formula (17) must
be diagonal in the number basis so that the corresponding observable would be phase shift
covariant [18].

State generated phase observables are important since some of them have been measured.
Indeed, E|0〉 can be seen as an angle margin observable of a phase space observable associated
to a Q-function, and this has been measured by Walker and Carrol for a coherent state input
field [25]. Moreover, in principle all state generated phase observables can be measured using
an eight-port homodyne detector [16].

We will see that state generated phase observables are approximately sharp and postprocess-
ing clean. They are not extremal nor preprocessing clean.

3.4. Approximately sharp phase observables. Let C(T) be a Banach space of continuous
complex functions on T equipped with the sup norm. By the Riesz representation theorem,
the topological dual M(T) of C(T) consists of regular complex Borel measures on T (or Baire
measures). We equip M(T) with the weak-star topology. In this topology, a net {pi}i∈I ⊂
M(T) converges to a point p ∈ M(T) if limi∈I

∫

fdpi =
∫

fdp for all f ∈ C(T); we denote
p = w*-limi∈Ipi.
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Let δt : C(T) → C, f 7→ δt(f) = f(t) be the Dirac distribution (or Dirac measure) concen-
trated on t ∈ T. Let us write the parameter z of a coherent state |z〉 in the form z = rt, where
r = |z| ∈ R and t = z/|z| ∈ T. Let us then recall the following result, proved in [19].

Proposition 11. Let E be a phase observable with a phase matrix (cm,n), and let u ∈ T. Then

w*-lim
r→∞

pE

|rt〉 = δtu

if and only if

lim
m→∞

cm,m+k = uk

for all k = 1, 2, 3, ....

This leads to the following useful conclusion.

Proposition 12. Let E be a phase observable with a phase matrix (cm,n). If there exists u ∈ T

such that

(18) lim
m→∞

cm,m+k = uk

for all k = 1, 2, 3, ..., then E is approximately sharp.

Proof. If condition (18) holds, then w*-limr→∞ pE

|rt〉 = δtu by the previous proposition. Let

X ∈ B(T) be a nonempty open set and choose t such that tu ∈ X. Let f ∈ C(T) be such that
f(tu) = 1, the support of f is contained in X and 0 ≤ f ≤ 1. For any ǫ > 0 there exists rǫ ≥ 0
such that

∫

fdpE

|rt〉 > 1 − ǫ for all r ≥ rǫ. Since, for all r ≥ rǫ,

1 = pE

|rt〉(X) + pE

|rt〉(T \X) ≥
∫

fdpE

|rt〉 + pE

|rt〉(T \X) > 1 − ǫ+ pE

|rt〉(T \X)

it follows that pE

|rt〉(T \ X) < ǫ for all r ≥ rǫ. Thus, limr→∞ pE

|rt〉(T \ X) = 0 and, hence,

limr→∞ pE

|rt〉(X) = 1. This implies that ‖E(X)‖ = 1. �

Note that (in the context of the above proof) limr→∞ pE

|rt〉(X) = δtu(X) does not hold for

all open X. Take, e.g., X = T \ {tu} and note that then pE

|rt〉(X) = 1 since pE

|rt〉 is absolutely
continuous measure with respect to the Haar measure.

Since the canonical phase observable Ecan corresponds to the phase matrix cm,n = 1, it follows
from Proposition 12 that Ecan is approximately sharp (see also [9] for a different proof).

Proposition 13. All state generated phase observables ET , T ∈ S(H)diag, are approximately
sharp.

Proof. Let ET be the phase observable generated by T =
∑

s∈N
λs|s 〉〈 s| ∈ S(H)diag. Since

ET =
∑∞

s=0 λsE|s〉 (weakly), the phase matrix elements of ET are cTm,n =
∑∞

s=0 λsc
|s〉
m,n. It has

been shown in [19] that limm→∞ c
|s〉
m,m+k = 1 for all k ∈ N and s ∈ N. Since |c|s〉m,m+k| ≤ 1, we

have limm→∞ cTm,m+k = 1 for all k ∈ N. The claim follows then from Prop. 12 with u = 1. �
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Finally, let us notice that, as seen in the proof of Proposition 12,

lim
r→∞

〈rt|ET (X)|rt〉 = 1

where X ⊆ T is open set and t ∈ X. This means that in the classical limit when the energy of
the state |z〉 is large, the phase parameter of |z〉 can be determined accurately by measuring ET .
However, there is no phase observable E for which 〈rt|E(X)|rt〉 ≈ 1 for finite energies r = |z|.
There exist (phase shift covariant) generalized operator measures satisfying this condition; these
measures describe measurements where only a restricted class of state preparations are available
[22].

3.5. Extremal phase observables. Let C be the convex set of all phase matrices and let
Ext C be the set of the extremal elements. The correspondence between the convex sets C and
O preserves the convex structures. Especially, a phase observable E determined by a phase
matrix (cn,m) is extremal in O if and only if (cn,m) is extremal in C.

Let (cn,m) be a phase matrix. It is always possible to choose a Hilbert space K and a sequence
of unit vectors {ηn}n∈N which is total in K such that cn,m = 〈 ηn | ηm 〉 for all n,m ∈ N; see [5].
The dimension of K is uniquely determined by (cn,m) and we call dimK the rank of (cn,m). Let us
denote by T (K) the Banach space of trace-class operators on K. As proved in [3], [17], the phase
matrix (cn,m) is extremal if and only if the trace-class closure of linC {|ηn 〉〈 ηn| : n ∈ N} ⊆ T (K)
is T (K).

Example 1. Let ξ ∈ C, |ξ| ≤ 1. Define unit vectors ηξ
2n := |0〉 and ηξ

2n+1 := ξ|0〉+
√

1 − |ξ|2|1〉
for all n ∈ N and a phase matrix (cξn,m) by cξn,m := 〈ηξ

n|ηξ
m〉. Thus, (cξn,m) is the phase matrix of

the so-called chess-board phase observable Eξ; see [19]. Assume that |ξ| 6= 1. Then the Hilbert
space K is C|0〉 + C|1〉 and the rank of (cξn,m) is 2. Moreover,

|0 〉〈 1| /∈ linC

{

|ηξ
n 〉〈 ηξ

n| : n ∈ N
}

= C|0 〉〈 0|+ C
(

ξ|0 〉〈 1|+ ξ|1 〉〈 0|+
√

1 − |ξ|2|1 〉〈 1|
)

so that Eξ is not extremal. If |ξ| = 1, then the rank of (cξn,m) is 1 and Eξ is automatically

extremal; see Proposition 5 in [3]. In addition, |cξn,m| = 1 for all n, m ∈ N so that Eξ ∼ Ecan

[19]. For more examples of extremal phase observables, we refer to [17].

Proposition 14. If the phase matrix (cm,n) has rank greater than 1 and cm,n ∈ R for all
m,n ∈ N, then (cm,n) /∈ Ext C, that is, the corresponding phase observable E is not extremal.

Proof. Let ηm, ηn be two linearly independent vectors in K, and define a (nonzero) bounded
operator B = |ηm 〉〈 ηn| − |ηn 〉〈 ηm| on K. For every j ∈ N, we have

tr [B|ηj 〉〈 ηj|] = cn,jcj,m − cm,jcj,n = cn,jcj,m − cn,jcj,m = cn,jcj,m − cn,jcj,m = 0 .

By the Hahn-Banach theorem this implies that the set linC {|ηn 〉〈 ηn| : n ∈ N} is not dense in
T (K). Therefore, using the above cited criterion the phase matrix (cm,n) is not extremal. �

Fix s ∈ N. Elements of the phase matrix
(

c
|s〉
m,n

)

of the state generated phase observable E|s〉
are of the form

c|s〉m,n =

∫ ∞

0

f s
m(x)f s

n(x)e−xdx ,
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where

f s
n(x) = (−1)max{0,s−n}

√

(min{n, s})!
(max{n, s})!x

|s−n|/2L
|s−n|
min{n,s}(x)

and

Lα
k (x) =

k
∑

l=0

(−1)l

(

k + α

k − l

)

xl

l!

is the associated Laguerre polynomial; see [18, 19]. Hence, the ηn-vectors of
(

c
|s〉
m,n

)

are the unit
vectors f s

n, n ∈ N, of L2(R+, e
−xdx), where R+ is the set of positive reals. All the functions

f s
n, n ∈ N, are linearly independent, and therefore the rank of (c

|s〉
m,n) is infinite. It is clear that

c
|s〉
m,n ∈ R for all m,n ∈ N, and hence the phase observable E|s〉 is not extremal by Proposition

14.
Let ET be the phase observable generated by a state T =

∑∞
s=0 λs|s 〉〈 s| ∈ S(H)diag. Then

ET =
∑∞

s=0 λsE|s〉 and hence, ET is not extremal. We thus have the following conclusion.

Proposition 15. Any ET , T ∈ S(H)diag, is not extremal in the convex set of all phase observ-
ables.

For completeness, we note that the phase matrix elements of ET are cTm,n =
∑∞

s=0 λsc
|s〉
m,n =

〈

fT
m | fT

n

〉

, where fT
n =

∑∞
s=0

√
λs f

s
n⊗|s〉 is a unit vector of the Hilbert space L2(R+, e

−xdx)⊗H,
and it follows that rank(cTm,n) = ∞.

Remark 1. Since the physically relevant phase observables ET and Ecan all have real-valued
phase matrices, it would be interesting to study the extremals of the smaller convex set of real-
valued phase matrices CR = {(cm,n) ∈ C | cm,n ∈ R, m, n ∈ N}. The complete characterization
of such extemals is given in [17, Theorem 1]. The canonical phase observable is extremal in
CR, but the question of the extremality of the state generated phase observables is open. The
method of the proof of Proposition 14 cannot be directly applied in this case as the operator
|ηm 〉〈 ηn|−|ηn 〉〈 ηm| is trivial on the real Banach space Ts(K) of selfadjoint trace class operators

on K = linR {ηn : n ∈ N}.

3.6. Postprocessing. As explained in Section 3.4, the observables Ecan and ET are approxi-
mately sharp. Therefore, it follows directly from Proposition 5 that they are all postprocessing
clean in O. It still remains to check whether they are postprocessing equivalent. Let us start
with the following observation.

Proposition 16. Let T, T ′ ∈ S(H)diag. If ET = ET ′, then T = T ′.

Proof. Let T =
∑

s∈N
λs|s 〉〈 s| ∈ S(H)diag and T ′ =

∑

s∈N
λ′s|s 〉〈 s| ∈ S(H)diag. Thus, cTm,n =

∑∞
s=0 λsc

|s〉
m,n and cT

′

m,n =
∑∞

s=0 λ
′
sc

|s〉
m,n. Assume ET = ET ′ so that cTm,n = cT

′

m,n for all m, n ∈ N.
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For all s, k ∈ N,

c
|s〉
0,2k = (−1)s+max{0,s−2k}

√

(min{2k, s})!
s!(max{2k, s})!

∫ ∞

0

x(s+|s−2k|)/2L
|s−2k|
min{2k,s}(x)e

−xdx

= (−1)s+max{0,s−2k}
(

(|s− 2k| + s)/2
)

! Γ(k)
√

(2k)! s! Γ
(

(|s− 2k| − s)/2
)

where Γ is the Gamma function and we have used the following equation (see formula 7.414(11)
in [7]):

∫ ∞

0

xγ−1Lα
n(x)e−xdx =

Γ(γ)Γ(1 + α− γ + n)

n! Γ(1 + α− γ)
, γ > 0, α, n ∈ N.

Since limx→−n |Γ(x)| = ∞ for all n ∈ N, it follows that

c
|s〉
0,2k = 0

if and only if 0 < k ≤ s. Thus,

cT0,2k =

k−1
∑

s=0

λsc
|s〉
0,2k =

k−1
∑

s=0

λ′sc
|s〉
0,2k.

By induction T = T ′. Indeed, cT0,2 = λ0c
|0〉
0,2 = λ′0c

|0〉
0,2 implies that λ0 = λ′0. If λs = λ′s for all

s = 0, 1, ..., k − 1 then

(λk − λ′k)c
|k〉
0,2(k+1) = cT0,2(k+1) − cT

′

0,2(k+1) = 0.

Thus, λk = λ′k. �

Proposition 17. Phase observables Ecan and ET are postprocessing clean. They are all post-
processing non-equivalent.

Proof. We need to prove the second claim. For two approximately sharp phase observables E

and E
′ with phase matrices (cm,n) and (c′m,n), Prop. 5 implies (taking into account that T is

Abelian group) that E
post∼ E

′ equals E
′(·) = U(t)E(·)U(t)∗ for some t ∈ T. By Theorem 1 this

means that c′m,n = tm−ncm,n for all m, n ∈ N.
Let T, T ′ ∈ S(H)diag and assume that, for some t ∈ T, ET ′(·) = U(t)ET (·)U(t)∗. We have

seen in the proof of Prop. 13 that limm→∞ cTm,m+k = limm→∞ cT
′

m,m+k = 1 for all k ∈ N. On the

other hand, cT
′

m,m+k = t−kcTm,m+k, from which t = 1 follows. Hence, ET
post∼ ET ′ only if ET = ET ′ ,

i. e. only if T = T ′ by Prop. 16.

Assume then that Ecan
post∼ ET . It follows that |cT0,2| = 1. This is impossible since cT0,2 = λ0c

|0〉
0,2

(see the proof of Prop. 16) and

c
|0〉
0,2 =

∫ ∞

0

f 0
0 (x)f 0

2 (x)e−xdx =
1√
2

∫ ∞

0

xe−xdx =
1√
2
< 1 .

�
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3.7. Preprocessing. Let E be a phase observable determined by the phase matrix (cm,n) ∈ C.
As shown in [23], we can define a U -covariant channel by formula

T (H) ∋ T 7→ ΦE(T ) :=

∞
∑

m,n=0

cn,m〈m|T |n〉|m 〉〈n| ∈ T (H) .

Moreover, this channel satisfies
ΘE = ΘEcan

◦ ΦE .

This shows that every phase observable is a preprocessing of the canonical phase observable
Ecan. In particular, Ecan is preprocessing clean.

It remains to find the equivalence class of Ecan in the preprocessing relation. The prepro-
cessing clean phase observables are exactly the phase observables belonging to this equivalence
class.

Proposition 18. If Ξ ∈ Ch(H)∗ is such that

Ξ(U(t)AU(t)∗) = U(t)Ξ(A)U(t)∗

for all t ∈ T and A ∈ L(H), then there exists a sequence of vectors {φi}i∈N in H ⊗ H with
‖φi‖ = 1 such that

〈j|Ξ(A)|i〉 =

∫

ti−j 〈φj | (I ⊗ U(t)AU(t)∗)φi 〉 dt ∀i, j ∈ N .

Proof. Let ρ be the right regular representation of T in L2 (T). Since T is compact and dimH =
∞, every separable unitary representation of T is contained in the tensor product representation
ρ⊗ I acting in the space L2 (T) ⊗H = L2 (T;H). Therefore, K = L2 (T;H) and D = ρ⊗ I is
the most general choice in the context of Prop. 9.

We define the following unitary operator T : L2 (T) ⊗H⊗H → L2 (T) ⊗H⊗H
[T (f ⊗ u⊗ v)](t) = f(t) ⊗ u⊗ U(t)∗v.

Clearly,
T (ρ⊗ I ⊗ I) = (ρ⊗ I ⊗ U)T = (D ⊗ U)T.

Therefore, every isometry W : H → K⊗H intertwining U with D⊗U is of the form W = TW̃ ,
where W̃ is an isometry intertwining U with ρ⊗ I ⊗ I. The most general such W̃ is given by

W̃ |n〉 = fn ⊗ φn,

where {φi}i∈N is a sequence of unit vectors in H⊗H. By Prop. 9, every U -covariant Ξ ∈ Ch(H)∗

is thus of the form

〈j|Ξ(A)|i〉 = 〈j|W̃ ∗T ∗(IK ⊗ A)TW̃ |i〉
=

〈

T (fj ⊗ φj) | (IL2(T) ⊗ IH ⊗ A)T (fi ⊗ φi)
〉

=

∫

ti−j 〈φj | (I ⊗ U(t)AU(t)∗)φi 〉 dt

for all A ∈ L(H) and i, j ∈ N. �
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Proposition 19. If E is a phase observable with phase matrix (cm,n), then the following are
equivalent:

(i) E
pre∼ Ecan

(ii) there exists n0 ∈ N and a sequence {λn}n≥n0
in T such that cm,n = λmλn for all m,n ≥

n0.

Proof. Let L∞(T) be the Banach space of bounded measurable functions on the unit circle T

with the sup norm. We recall that, if E is a (not necessarily covariant) POVM based on T

with values in H, then we can define a norm decreasing linear map E : L∞(T) → L(H) in the
following way. If T ∈ T (H), let pE

T be the bounded complex measure on T given by

pE

T (X) = tr [TE(X)] ∀X ∈ B(T).

If f ∈ L∞(T), the operator E(f) is then defined by

tr [TE(f)] =

∫

f(t) dpE

T (t) ∀T ∈ T (H) .

For all j ∈ Z, let fj(t) = tj. Then

E(fj) =
∑

n≥0

cn,j+n|n 〉〈 j + n| if j ≥ 0

E(fj) =
∑

n≥0

cn−j,n|n− j 〉〈n| if j ≤ 0,

the sums converging in the weak sense. Clearly, E(fj)
∗ = E(f−j) for all j ∈ N.

If Ξ ∈ Ch(H)∗, then it is easy to check that Ξ(E(f)) = E
Ξ(f), where E

Ξ is the POVM given
by

E
Ξ(X) = Ξ(E(X)) ∀X ∈ B(T) .

Suppose Ξ is a U -covariant channel, and let {φi}i∈N be a sequence of unit vectors in H⊗H
associated to Ξ as in Prop. 18. Then by Fourier analysis Ecan = E

Ξ if and only if Ecan(fj) =
E

Ξ(fj) for all j ∈ N.
For j ∈ N, we have

〈q|EΞ(fj)|p〉 =

∫

tp−q 〈φq | (I ⊗ U(t)E(fj)U(t)∗)φp 〉 dt

=

∫

tp−q
∑

n≥0

cn,j+n 〈φq | (I ⊗ U(t)|n 〉〈 j + n|U(t)∗)φp 〉 dt

=
∑

n≥0

cn,j+n

∫

tp−q−j 〈φq | (I ⊗ |n 〉〈 j + n|)φp 〉 dt

= δj,p−q

∑

n≥0

cn,j+n 〈φq | (I ⊗ |n 〉〈 j + n|)φp 〉
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for all p, q ∈ N. Setting

(19) φk =
∑

r≥0

φr
k ⊗ |r〉

with φr
k ∈ H such that

∑

r≥0 ‖φr
k‖2 = 1, the last equation becomes

〈q|EΞ(fj)|p〉 = δj,p−q

∑

n≥0

cn,j+n

〈

φn
q |φj+n

p

〉

.

This must be compared with

〈q|Ecan(fj)|p〉 = δj,p−q.

The two expressions are the same if and only if

(20)
∑

n≥0

cn,p−q+n

〈

φn
q |φp−q+n

p

〉

= 1 for all p ≥ q ≥ 0.

If {ηn}n∈N are unit vectors in H such that cn,m = 〈 ηn | ηm 〉 (see [5]), eq. (20) amounts to

(21)
∑

n≥0

〈

ηn ⊗ φn
q | ηp−q+n ⊗ φp−q+n

p

〉

= 1 for all p ≥ q ≥ 0.

Since
∑

n≥0

∥

∥ηj+n ⊗ φj+n
k

∥

∥

2
=

∑

n≥0

∥

∥φj+n
k

∥

∥

2 ≤ 1 for all j, k ∈ N,

by Cauchy-Schwartz inequality Eq. (21) holds if and only if

ηn ⊗ φn
q = ηp−q+n ⊗ φp−q+n

p ∀n ∈ N and
∑

n≥0

∥

∥φn
q

∥

∥

2
=

∑

n≥0

∥

∥φp−q+n
p

∥

∥

2
= 1.

for all p ≥ q ≥ 0. These two conditions are in turn equivalent to the following

(1) φn
p = 0 for all 0 ≤ n < p, and

∑

n≥p

∥

∥φn
p

∥

∥

2
= 1;

(2) ηn ⊗ φn
0 = ηp+n ⊗ φp+n

p for all n, p ∈ N.

If conditions (1) and (2) hold, let n0 be such that φn0

0 6= 0. Condition (2) with n = n0 then
implies ηp+n0

= λpηn0
for all p ∈ N, and thus cn0+p,n0+q = λpλq for all p, q ≥ 0.

If conversely there exists n0 ∈ N and a sequence {λn}n≥n0
such that cm,n = λmλn for all

m,n ≥ n0, then by Cauchy-Schwartz inequality ηn = λn0
λnηn0

for all n ≥ n0. Choose φk in
Eq. (19) such that

φn
q = δn0,n−qλnλn0

φ ∀n ∈ N,

with φ ∈ H such that ‖φ‖ = 1 (in the above formula, φn
q = 0 if n < n0). Then the sequence

{φn
q }q,n∈N satisfies conditions (1) and (2) above. �

A phase observable can be preprocessing clean without being extremal. Indeed, we have the
following example.
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Example 2. Let n0 ≥ 1. Define cnm = 1 if n ≥ n0 and m ≥ n0, and cnm = δnm (Kronecker
delta) otherwise. Obviously, (cnm) is a phase matrix and the corresponding phase observable
E is not unitarily equivalent with Ecan. As a consequence of Proposition 19 we conclude that

E
pre∼ Ecan. However, in Proposition 5 we have shown that E ∼U Ecan equals E

post∼ Ecan.
Therefore, E and Ecan are not postprocessing equivalent. Note that cm,n ∈ R for all m,n and
the rank of (cnm) is n0 + 1 (this can be seen easily by noting that the η-sequence of (cnm)
can be chosen such that the first n0 + 1 ηn’s are mutually orthonormal and ηn = ηn0+1 for all
n > n0 + 1), hence E is not extremal by Prop. 14. Moreover, E is approximately sharp by
Prop. 12 and, thus, postprocessing clean.

We have seen that Ecan is optimal in all four ways. However, there are also other phase
observables sharing this feature. This is illustrated in the following example.

Example 3. Let {f1, f2} be the canonical basis of C
2, and let η0 = f1, η1 = f2, η2 = 2−1/2(f1 +

f2), η3 = 2−1/2(f1 + if2), and ηn = f1 for all n ≥ 4. Define the phase matrix cm,n = 〈 ηm | ηn 〉,
and let E be the associated phase observable.

It has been shown in [17] that (cm,n) is a rank 2 phase matrix which is extremal in the convex
set of phase matrices, hence E is extremal in the convex set O. Moreover, limm→∞ cm,m+k = 1 for
all k ∈ N, and therefore E is approximately sharp by Proposition 12. It follows from Proposition
5 that it is also postprocessing clean. By Proposition 19 the observable E is preprocessing clean.
However, E 6∼U Ecan since the ranks of the associated phase matrices are different.

Acknowledgments. The authors thank Jukka Kiukas and Kari Ylinen for valuable discus-
sions.
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