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COMMUTATIVE POVMS AND FUZZY OBSERVABLES

S. TWAREQUE ALI, CLAUDIO CARMELI, TEIKO HEINOSAARI, AND ALESSANDRO TOIGO

Abstract. In this paper we review some properties of fuzzy observables, mainly as realized by
commutative positive operator valued measures. In this context we discuss two representation
theorems for commutative positive operator valued measures in terms of projection valued
measures and describe, in some detail, the general notion of fuzzification. We also make some
related observations on joint measurements.

1. Introduction

Fuzzy observables arise in several ways in quantum formalism. Their history goes back to
the 1970s, and they were one of the first concrete examples of genuine positive operator valued
measures (POVMs) in quantum mechanics. For commutative POVMs, this concept gives useful
representation theorems in terms of projection valued measures (PVMs). On the other hand,
fuzzification is a natural way to model reduction in the statistical description of the system.
Fuzzy observables are also intimately related to the topic of joint measurements.

In this article we discuss all these aspects of fuzzy observables. In Section 2 we give a brief
historical overview of fuzzy observables. Section 3 contains some basic definitions and fixes the
notation. In Section 4 we present two representation theorems for commutative POVMs. In
Section 5 we explain the connection of these results to the concept of fuzzy observables. Finally,
in Section 6 we present some remarks related to joint measurements.

2. A quick historical overview

The appearance of positive operator valued measures in studying of the foundations of quan-
tum mechanics followed along several lines. The axiomatization of quantum mechanics, built
upon an analysis of the measurement process, as undertaken by Günther Ludwig and the Mar-
burg school in the 1960’s and 70’s [Lud64, Lud70], led to the notion of generalized observables,
which went beyond the orthodox concept of an observable in quantum mechanics. An observ-
able in this more general setting turned out to be a positive operator valued measure on a
Hilbert space. The σ-algebra of this measure was generally built on the set of possible values of
the observable or observables, the implication being that it was theoretically possible to discuss
joint measurements of incompatible observables. Thus, in orthodox quantum mechanics the
observables of position and momentum are each characterized by projection valued measures,
i.e., the spectral projectors of the corresponding self adjoint operators, defined on the space
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of possible observed values of position and momentum, and they are not simultaneously mea-
surable. In the more general setting, it is entirely possible to discuss the joint measurement
of these two observables, using a positive operator valued measure defined on the joint set of
values of classical position and momentum. Of course, in such a joint measurement neither
position nor momentum can assume sharp values, implying necessarily a certain fuzzification.
This line of thought leads to a one type of formulation of Heisenberg’s uncertainty principle -
a condition ensuring that mutually exclusive measurements of position and momentum can be
reconciled if an appropriate trade-off is accepted. For a recent exposition of this topic, we refer
to [BHL07].

The second line of development, which led to the use of POVMs was the generalization
of the notion of a conditional expectation in probability theory. An algebraic formulation of
the notion of conditional expectation, in the context of classical, i.e., commutative, probability
theory was worked out in the 1950’s [Moy54, NT54], which was further developed and extended
to non-commutative probability theories, in which the classical algebra of stochastic variables
was replaced by a non-abelian von Neumann algebra. Such a generalization, apart from its
intrinsic mathematical interest, was then shown to be useful in discussions of the measurement
process in quantum mechanics [NU62, Ume54]. Later, Davies and Lewis, in developing an
operational basis for quantum measurement theory and a related theory of quantum stochastic
processes, [DL70, Dav70, Dav76] gave a definition of a conditional expectation, as the dual to
the concept of a measurement. This had the virtue of extending the von Neumann collapse
postulate to observables with continuous spectra. Each measurement process then singled out
an observable, defined as a POVM.

There is at least one more significant and independent line of development involving POVMs,
which started in the early 1970s, and most notably expounded and developed in the works of
Holevo and Helstrom [Hel76, Hol82]. Here the notion of a POVM appeared in the then emerg-
ing field of quantum information and statistical decision theory, essentially independently of
the ideas of Ludwig on quantum foundations and Davies and Lewis on repeated measurements.
This pioneering work led to the recognition of the fact that the statistics of optimal quantum
measurements is often obtained by using what were called non-orthogonal POVMs. Simul-
taneously, the relevance of Naimark’s extension theorem (from POVMs to projection valued
measures), was first pointed out in this context.

The idea that POVMs could in some sense describe unsharp measurements was already
present in the work of Davies and Lewis. These ideas were further developed to a more complete
theory of fuzzy observables in [AE74, Pru84]. In the succeeding years the connection between
unsharp or fuzzy observables and POVMs has been worked out in great detail by a number of
authors. For a systematic presentation of various aspects of POVMs, we refer to [BGL97].

3. Positive operator valued measures

Quantum observables are mathematically described by positive operator valued measures.
In this section we shortly recall this concept and fix the notation.
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Let Ω be a Hausdorff locally compact second countable topological space (lcsc space, for
short). We use the following notations:

• B(Ω) is the Borel σ-algebra of Ω
• C0(Ω) is the Banach space of countinuous complex functions on Ω vanishing at infinity,

endowed with the uniform norm
• M(Ω) is the Banach space of complex measures on Ω endowed with the total variation

norm
• M(Ω)+ is the subset of positive elements in M(Ω)
• P (Ω) ⊂M(Ω)+ is the subset of probability measures

We will regard an element µ ∈ M(Ω) both as a σ-additive mapping µ : B(Ω) → C and
as a bounded linear functional µ : C0(Ω) → C. In the latter case, we have the isometric
isomorphism M(Ω) = C0(Ω)∗. In general, if L∞ (Ω) denotes the Banach space of bounded
measurable complex functions on Ω endowed with the uniform norm, an element µ ∈ M(Ω)
determines a bounded linear functional µ : L∞ (Ω) → C by means of the formula

µ(φ) =

∫

Ω

φ(x) dµ(x) ∀φ ∈ L∞ (Ω) .

We let B(Ω) be the unit ball in M(Ω), and B(Ω) is endowed with the weak*-topology. Since
C0(Ω) is separable, B(Ω) is a compact metrizable space. Moreover, B(Ω)+ := M(Ω)+ ∩ B(Ω)
is closed in B(Ω), and P (Ω) is closed in B(Ω)+ if and only if Ω is compact.

Let H be a complex separable Hilbert space. We denote by L(H) the Banach space of
bounded operators on H with the uniform norm. The convex set of positive trace one elements
in L(H) is denoted by S(H).

A positive operator valued measure (POVM) E on Ω with values in H can be defined in two
equivalent ways:

(a) as a mapping E : B(Ω) → L(H) such that
(i) E(X) ≥ O for all X ∈ B(Ω)
(ii) E(Ω) = I
(iii) for all disjoint finite or denumerable sequences {Xi}i∈I of sets in B(Ω),

E (∪i∈IXi) =
∑

i∈I
E(Xi),

where the sum converges in the weak (or, equivalently, ultraweak or strong) operator
topology;

(b) as a linear mapping E : C0(Ω) → L(H) such that
(i) E(f) ≥ O if f ≥ 0
(ii) If {fn}n∈N is a sequence of positive functions in C0(Ω) such that fn ↑ 1, then

E(fn) ↑ I.

The link between the two definitions is established by the following integral formula

(1) E(f) =

∫

Ω

f(x) dE(x) ,
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true for all f ∈ C0(Ω). Here in the left hand side E is defined according to (b), and in the right
hand side definition (a) is used. The integral in eq. (1) has to be understood in the following
way. If E is a POVM in the sense of definition (a), then for all T ∈ S(H) we can define a
probability measure pE

T ∈ P (Ω), given by

(2) pE

T (X) = tr [TE(X)] ∀X ∈ B(Ω) .

Eq. (1) then reads

tr [TE(f)] =

∫

Ω

f(x) dpE

T (x) ∀T ∈ S(H).

Note that if φ ∈ L∞ (Ω), we can define in the same way the bounded operator

(3) E(φ) =

∫

Ω

φ(x) dE(x) .

We see from eq. (3) that ‖E(φ)‖ ≤ ‖φ‖ for every φ ∈ L∞ (Ω). In particular, E : L∞ (Ω) → L(H)
is continuous. We refer to [Ber66] for a more detailed discussion of these facts.

In quantum formalism, the set S(H) represents the state space of a quantum system. Quan-
tum observables are, on the other hand, described by positive operator valued measures. The
basic numerical predictions of quantum mechanics - the measurement outcome probability dis-
tributions - are given by the trace formula (2). Namely, the number pE

T (X) is interpreted as the
probability that a measurement outcome x ∈ X occurs when a measurement of the observable
E is performed and the system is in the state T .

Remark 1. If Ω is compact, then C0(Ω) = C(Ω), the space of continuous functions on Ω. Item
(ii) in definition (b) is equivalent to E(1Ω) = I, where 1Ω is the constant function 1Ω(x) ≡ 1.

For a subset M ⊂ L(H), we denote by M′ the commutant of M in L(H). If E is a POVM,
we denote

(4) E
′ = {E(f) | f ∈ C0(Ω)}′.

Proposition 1. Let E be a POVM. Then E′ = {E(X) | X ∈ B(Ω)}′

Proof. If U is unitary, then U ∈ E′ if and only if the POVMs f 7→ E(f) and f 7→ EU(f) =
UE(f)U∗ are equal. This implies that E(X) = EU(X) = UE(X)U∗ for all X ∈ B(Ω). Therefore,
U ∈ E′ if and only if U ∈ {E(X) | X ∈ B(Ω)}′. The claim then follows by decomposing each
A ∈ L(H) as a linear combination of four unitaries {U1 . . . U4} such that A′ = {U1 . . . U4}

′. �

4. Commutative observables

To emphasize the underlying physical context, we will use the term observable instead of
POVM. This section, however, is concerned with certain mathematical representations of ob-
servables. The physical interpretation of these results are then discussed in Section 5.

Definition 1. An observable E is commutative if E(X) ∈ E′ for all X ∈ B(Ω), or, equivalently,
if E(f) ∈ E

′ for all f ∈ C0(Ω).
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A special case of a commutative observable is a projection valued measure (PVM). It is a
mapping P : B(Ω) → L(H) which in definition (a) satisfies the additional property

P(X)P(Y ) = P(X ∩ Y )

for all X, Y ∈ B(Ω). It is clear that commutativity of P follows from this condition. When
using definition (b) this additional condition reads

P(f)P(g) = P(fg)

for all f, g ∈ C0(Ω). Projection valued measures are commonly referred as sharp observables.
As we show in this section, each commutative observable has at least two possible represen-

tations in terms of sharp observables. This topic has been recently studied by Jenčová and
Pulmannová in [JP07],[JP09], where related results have been obtained. Our first represen-
tation theorem for commutative observables (Theorem 2) goes back to Holevo [Hol72], who
proved it in the general case in which Ω is an arbitrary measurable space. It claims that, if E

is a commutative observable, then there is a unique sharp observable P on the set of measures
B(Ω)+ such that a kind of canonical spectral decomposition of E holds (eqs. (8) and (9)). Actu-
ally, P vanishes outside the set of probability measures P (Ω). As in the usual spectral theorem
for normal operators, E and P have the same commutant in L(H). Under our assumption that
Ω is a lcsc space, we will work out a different and more easy proof of Holevo’s result, which
simply makes use of elementary facts from C∗-algebra theory. A second representation theorem
(Theorem 3) which, as explained below, is in a way complementary to the first, was proved in
[Ali82]. We present it here without proof, describing only its content.

Theorem 1. Let E : C0(Ω) → L(H) be a commutative observable. Then there exists a triple
(Σ,P, µ) such that

(i) Σ is a compact metrizable space;
(ii) P is a sharp observable (i.e. PVM) on Σ with values in H and supp P = Σ;
(iii) µ : Σ → B(Ω)+ is a weak*-continuous injective mapping;
(iv) for all f ∈ C0(Ω)

(5) E(f) =

∫

Σ

[µ(h)](f) dP(h).

If (Σ̃, P̃, µ̃) is another triple satisfying items (i)-(iv) above, then there exists a homeomorphism

Φ : Σ → Σ̃ such that P̃ = P ◦ Φ−1 and µ = µ̃ ◦ Φ.
Moreover, we have the equality P′ = E′.

Proof. We denote by C∗(E) the commutative C∗-algebra generated in L(H) by the set {E(f) |
f ∈ C0(Ω)} and I. Since C0(Ω) is separable and the mapping f 7→ E(f) is continuous, the
Banach space C∗(E) is separable.

Let Σ be the maximal ideal space of C∗(E). Then Σ is a compact metrizable space. We
denote the Gelfand transform of C∗(E) by Γ, i.e.,

Γ : C∗(E) → C(Σ), ΓA(h) = h(A) ∀A ∈ C∗(E), h ∈ Σ .

Thus, Γ is a C∗-algebra isomorphism between C∗(E) and C(Σ).
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For all h ∈ Σ, we define a mapping µ(h) from C0(Ω) to C by

[µ(h)](f) := [ΓE(f)](h) ∀f ∈ C0(Ω) .

From the properties of Γ and E follows that µ(h) is a positive bounded linear functional on
C0(Ω), hence µ(h) ∈M(Ω)+. Moreover,

|[µ(h)](f)| ≤ ‖Γ‖ ‖E(f)‖ ≤ ‖f‖ ,

which implies that ‖µ(h)‖ ≤ 1.
We have thus defined a mapping µ from Σ to M(Ω). The weak*-continuity of µ is clear from

the definition. Since the subset {[µ(·)](f) | f ∈ C0(Ω)} together with the constant function 1Ω

generates the algebra C(Σ), it separates the points of Σ. Therefore, µ : Σ → M(Ω) is injective.
Since Γ−1 is a ∗-representation of C(Σ) in L(H), there exists a sharp observable (PVM)

P : B(Σ) → L(H) such that

Γ−1(φ) =

∫

Σ

φ(h) dP(h) ∀φ ∈ C(Σ)

(see e.g. Theorem 2.5.5 in [Mur90]). Since Γ−1 is injective, supp P = Σ. Moreover,

E(f) = Γ−1ΓE(f) =

∫

Σ

[µ(h)](f) dP(h) ,

and item (iv) follows.

Now suppose (Σ̃, P̃, µ̃) is another triple satisfying items (i)-(iv) in the theorem. Let

Π(φ̃) =

∫

Σ̃

φ̃(h̃) dP̃(h̃) ∀φ̃ ∈ C(Σ̃) .

Then Π is a ∗-homomorphism of C(Σ̃) in L(H), which is injective since supp P̃ = Σ̃. Moreover,

Π ([µ̃(·)](f)) = E(f) ∀f ∈ C0(Ω).

By injectivity of µ̃, the set of functions {[µ̃(·)](f) | f ∈ C0(Ω)} separates the points of Σ̃,

and it is closed under complex conjugation since µ̃(h̃) ∈ M(Ω)+ for all h̃ ∈ Σ̃. The functions

{[µ̃(·)](f) | f ∈ C0(Ω)} and 1Ω thus generate the algebra C(Σ̃) by Stone-Weierstrass theorem.
It follows that Π(C(Σ̃)) = C∗(E).

The composition ΓΠ is thus a ∗-isomorphism of C(Σ̃) into C(Σ), hence there exists a home-
omorphism Φ : Σ → Σ̃ such that

ΓΠ(φ̃) = φ̃ ◦ Φ ∀φ̃ ∈ C(Σ̃)

(see Theorem 2.1 in §VI of [Con90]). We thus have, for all f ∈ C0(Ω),

[µ(·)](f) = ΓΠ ([µ̃(·)](f)) = [µ̃ ◦ Φ(·)](f) .

Moreover,∫

Σ̃

φ̃(h̃) dP̃(h̃) = Π(φ̃) = Γ−1
[
ΓΠ(φ̃)

]
=

∫

Σ

φ̃(Φ(h)) dP(h) =

∫

Σ̃

φ̃(h̃) d(P ◦ Φ−1)(h̃)

for all φ̃ ∈ C(Σ̃), which implies P̃ = P ◦ Φ−1.
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Finally, S ∈ E′ if and only if S ∈ C∗(E)′, and, by spectral theory, C∗(E)′ = P′, so that the
last claim is proved. �

Proposition 2. Suppose that Ω is compact. Then in the situation of Theorem 1, µ(h) is a
probability measure for all h ∈ Σ.

Proof. For each h ∈ Σ, we get

[µ(h)](1Ω) = [ΓE(1Ω)](h) = ΓI(h) = h(I) = 1 .

�

Suppose Σ is a lcsc space. We say that a mapping µ : Σ → M(Ω)+ is weak*-measurable if
the mappings

Σ ∋ h→ [µ(h)](f) ∈ C

are measurable for all f ∈ C0(Ω). The following auxiliary result is needed later.

Proposition 3. Let Σ be a lcsc space and µ a mapping from Σ to M(Ω)+. Then the following
are equivalent:

(a) µ is weak*-measurable;
(b) the mappings Σ ∋ h→ [µ(h)](X) ∈ R are measurable for all X ∈ B(Ω).

If µ(Σ) ⊂ B(Ω)+, then the above two conditions are also equivalent to

(c) µ : Σ → B(Ω)+ is a measurable map.

Proof. Suppose (b) holds. Fix f ∈ C0(Ω). For n ∈ N, let {Ei}i∈I be a finite partition of Ω into
disjoint Borel sets such that |f(x) − f(y)| ≤ 1/n for all x, y ∈ Ei and i ∈ I. Choose xi ∈ Ei,
and let φn =

∑
i f(xi)1Ei

. Then the mapping h 7→ [µ(h)](φn) is measurable, and

|[µ(h)](f) − [µ(h)](φn)| ≤ ‖µ(h)‖ /n .

Hence the mapping h 7→ [µ(h)](f) is measurable being the pointwise limit of measurable func-
tions.

Suppose then that (a) holds, i.e., µ is weak*-measurable. Let

L∞

µ = {φ ∈ L∞ (Ω) | h 7→ [µ(h)](φ) is a measurable mapping} .

If {φn}n∈N ⊂ L∞

µ , φ ∈ L∞ (Ω) are such that φn ↑ φ, then [µ(h)](φn) ↑ [µ(h)](φ) for all h by
dominated convergence theorem, hence h 7→ [µ(h)](φ) is measurable. This shows that L∞

µ is a
monotone class in L∞ (Ω). Since C0(Ω) ⊂ L∞

µ , L∞

µ = L∞ (Ω) by Proposition 6.2.9 in [Ped89].
In particular, h 7→ [µ(h)](X) = [µ(h)](1X) is measurable for all X ∈ B(Ω).

Now assume that µ(Σ) ⊂ B(Ω)+. Since the mapping B(Ω)+ ∋ ν 7→ ν(f) ∈ C is continuous,
it is clear that (c) implies (a). On the other hand, suppose that (a) holds. Since B(Ω)+ is
second countable, there exist sequences {νn}n∈N in B(Ω)+, {εn}n∈N in R+, {kn}n∈N in N, and,
for all n ∈ N, {fn

i }
kn

i=1 in C0(Ω), such that the open sets

Un = {ν ∈ B(Ω)+ | |ν(fn
i ) − νn(fn

i )| < εn for all i = 1, 2 . . . kn}

form a denumerable basis for the topology of B(Ω)+. By (a), µ−1(Un) ∈ B(Σ) for all n, hence
µ−1(U) ∈ B(Σ) for all open U ⊂ B(Ω)+. This implies that µ is measurable. �
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Corollary 1. The set P (Ω) of probability measures is a measurable subset in B(Ω)+.

Proof. Take in the above proposition Σ = B(Ω)+ and µ the identity mapping, which is weak*-
measurable being clearly weak*-continuous. The set P (Ω) = {ν ∈ B(Ω)+ | ν(Ω) = 1} is thus
measurable, since it is the inverse image of 1 under the measurable mapping µ 7→ µ(Ω). �

Proposition 4. Let E and (Σ,P, µ) be as in Theorem 1. Then µ(h) is a probability measure
for P-almost all h ∈ Σ.

Proof. If {fn}n∈N is a sequence of positive functions in C0(Ω) such that fn ↑ 1Ω, we have
∫

Σ

[µ(h)](fn) dP(h) = E(fn) ↑ I.

On the other hand, [µ(h)](fn) ↑ [µ(h)](Ω) for all h ∈ Σ, so that, by monotone convergence
theorem and uniqueness of the limit,

(6)

∫

Σ

[µ(h)](Ω) dP(h) = I.

For ε > 0, let Xε = {h ∈ Σ | [µ(h)](Ω) < 1 − ε}. Multiplying eq. (6) by P(Xε), we obtain

P(Xε) =

∫

Xε

[µ(h)](Ω) dP(h) ≤ (1 − ε)P(Xε),

hence P(Xε) = 0. The claim then follows. �

Proposition 5. Let E and (Σ,P, µ) be as in Theorem 1. Then

(7) E(X) =

∫

Σ

[µ(h)](X) dP(h) ∀X ∈ B(Ω) .

Proof. For every X ∈ B(Ω), define

F(X) =

∫

Σ

[µ(h)](X) dP(h) .

Then F is an observable (in the sense of definition (a)). If C ⊂ Ω is compact, and {fn}n∈N is
a sequence in C0(Ω) such that fn ↓ 1C (such a sequence exists by Lemma 6.2.8 in [Ped89]),
then by dominated convergence theorem E(fn) ↓ E(C), [µ(h)](fn) ↓ [µ(h)](C) for all h, and∫
Σ
[µ(h)](fn) dP(h) ↓ F(C). By eq. (5) and uniqueness of the limit, E(C) = F(C).

As Ω is a lcsc space, every probability measure pE

T , with T ∈ S(H), is regular (see e.g.
Chapter 7 in [Fol99]). Therefore, the observable E has the following regularity property:

E(X) = LUB {E(C) | C compact subset of X} .

It then follows that E(X) = F(X) for all X ∈ B(Ω). �

If P is a PVM on B(Ω)+ such that P(B(Ω)+ \ P (Ω)) = O, then it is easy to check that the
formula

E(f) =

∫

B(Ω)+
µ(f) dP(µ) ∀f ∈ C0(Ω)
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defines a commutative observable E on Ω. Collecting the above results, we obtain the following
converse of this fact.

Theorem 2. Let E be a commutative observable on Ω. Then there exists a unique sharp
observable P on B(Ω)+ such that

(8) E(f) =

∫

B(Ω)+
µ(f) dP(µ) ∀f ∈ C0(Ω) ,

or, equivalently,

(9) E(X) =

∫

B(Ω)+
µ(X) dP(µ) ∀X ∈ B(Ω) .

Moreover, B(Ω)+ \ P (Ω) is a P-null subset of B(Ω)+, and E′ = P′.

Proof. Apply Theorem 1, and observe that µ : Σ → B(Ω)+, being a continuous injective
mapping between compact metric spaces, is a homeomorphism of Σ onto µ(Σ). Eq. (8) then
follows transporting P on µ(Σ) by means of such homeomorphism and extending P to the whole
B(Ω)+ by letting P = O on B(Ω)+ \ µ(Σ). Eq. (9) follows by Proposition 5. By Theorem 1,
P′ = E′. By Corollary 1 and Proposition 4, B(Ω)+ \ P (Ω) is a P-null Borel set.

Suppose P1, P2 are two PVMs on B(Ω)+ satisfying eq. (8). For i = 1, 2, let Σi = supp Pi,
and let ji : Σi → B(Ω)+ be the inclusion mapping. Therefore,

E(f) =

∫

Σi

[ji(µ)](f) dPi(µ) ∀f ∈ C0(Ω).

By Theorem 1, there exists a homeomorphism Φ : Σ1 → Σ2 such that j1 = j2 ◦ Φ and P2 =
P1 ◦ Φ−1. Hence, Σ1 = Σ2, Φ = id, and P1 = P2. This shows uniqueness of P in eq. (8).

Suppose P1, P2 are two PVMs on B(Ω)+ satisfying eq. (9). If f ∈ C0(Ω), choose a sequence
{φn}n∈N ⊂ L∞ (Ω) as in the first half of the proof of Proposition 3. For all µ ∈ B(Ω)+, we have
µ(φn) → µ(f), |µ(φn)| ≤ ‖φn‖ ≤ ‖f‖, and

∫

B(Ω)+
µ(φn) dP1(µ) =

∫

B(Ω)+
µ(φn) dP2(µ).

By dominated convergence theorem and uniqueness of the limit,
∫

B(Ω)+
µ(f) dP1(µ) =

∫

B(Ω)+
µ(f) dP2(µ).

Since this holds for all f ∈ C0(Ω), P1 = P2 follows. �

Theorem 2 can be thought of as expressing the commutative observable E as an operator
average over probability measures. There is still another representation of a commutative
observable, which we now discuss, and which in a sense expresses E as a probability average
over sharp observables (PVMs) and is thus complementary to the preceding representation.
A detailed proof of this result can be found in [Ali82, Ali84]. Here we only describe the
representation.
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Suppose E is an observable (not necessarily commutative), and consider the set E′ defined
in eq. (4). The double commutant (E′)′, which we denote by A(E), is then a von Neumann
algebra, and hence a weakly closed algebra of operators in L(H). (Recall that a von Neumann
algebra A is a ∗-invariant set of bounded operators on H which is an algebra under the operator
product and equal to its double commutant, A = A′′. Such an algebra is necessarily weakly
closed). If C∗(E) is the C∗ algebra generated in L(H) by the set {E(f) | f ∈ C0(Ω)} and I,
then clearly C∗(E) ⊂ A(E).

Next, consider the set Ŝ of all sharp observables on Ω the ranges of which lie in A(E). Thus,

a sharp observable P is an element of Ŝ if and only if P(X) ∈ A(E) for all X ∈ B(Ω). There is

a natural structure of a measure space on Ŝ, so that one can define ordinary Borel measures

on it. Let ν be such a positive measure on Ŝ, with ν(Ŝ) = 1 (i.e., ν is a probability measure

on Ŝ). Then the operators E(X), X ∈ B(Ω), defined through the integral representation

E(X) =

∫

bS

P(X) dν(P), or, symbolically, E =

∫

bS

P dν(P)

generate an observable. The convergence of the above integral is in the weak topology of L(H),
meaning that for arbitrary φ, ψ ∈ H,

〈φ|E(X)ψ〉 =

∫

bS

〈φ|P(X)ψ〉 dν(P) .

The interesting fact about the above representation of the observable E as a probability average
over the sharp observables P, is that E and ν determine each other uniquely.

If E is commutative, there exists a unique probability measure ν = ν for which E = E. This
result is stated precisely below.

Theorem 3. Let E be a commutative observable on Ω. There exists a unique probability Borel

measure ν on Ŝ such that

(10) E(X) =

∫

bS

P(X) dν(P) .

the integral converging weakly. The measure ν is unaltered if A(E) is replaced by any other von
Neumann algebra which contains A(E).

A simple example. The representation theorems for commutative observables can be illus-
trated by means of a simple example. Let H = L2(R, dx) and let ν be a fixed probability
measure defined on B(R). On H we define the commutative observable E(X), X ∈ B(R), as
the operator of multiplication by the function x 7→ 1X ∗ ν(x), i.e., for any φ ∈ H

(E(X)φ)(x) = 1X ∗ ν(x)φ(x) , where 1X ∗ ν(x) =

∫

R

1X(x− y) dν(y) ,

1X being the characteristic function of the set X. Defining the sharp observable Px for each
x ∈ R and writing P0 = P:

(Px(X)φ)(y) = 1X(y − x)φ(y) , X ∈ B(R) , φ ∈ H,
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we easily see that E(X) may be written in the form

(11) E(X) =

∫

R

Px(X) dν(x) ,

as a weak integral. This is the representation given in eq. (10). On the other hand, it is also
clear that E(X) may alternatively be written in the form:

(E(X)φ)(x) = νx(X)φ(x) ,

again as a weak integral and where ν is the probability measure νx(X) = ν(x−X) and ν0 = ν.
Thus, considering x 7→ νx(X) as a multiplication operator, for each fixed X ∈ B(R), we get

(12) E(X) =

∫

R

νx(X) dP(x) =

∫

B(R)+
µ(X) dP̃(µ) ,

where P̃ = P ◦ Φ−1 with Φ : R → B(R)+, Φ(x) = νx. The last formula is the expression of E

in the form (9). In (11) the commutative observable E is written as an integral over the sharp
observables Px, with respect to the probability measure ν carried by these sharp observables,
while in (12), E is written as an integral over the probability measures νx, with respect to the
sharp observable P, supported by the probability measures. If f ∈ C0(R) is a real function, we
may think of it as a sharp classical observable on the value space R while f ∗ ν is an averaged
out version of f . Thus, since

E(f) =

∫

R

Px(f) dν(x) =

∫

R

νx(f) dP(x) ,

we may call the first representation an unsharp quantum operator corresponding to a sharp
classical observable and the second representation as the sharp quantum operator of an unsharp
classical observable.

5. Fuzzy observables

Let Ω1 and Ω2 be two lcsc spaces. Recall that a mapping µ : Ω2 → P (Ω1) is a Markov kernel
if x 7→ [µ(x)](X) is measurable for every X ∈ B(Ω1). By Proposition 3, this is equivalent
to weak*-measurability and measurability of µ. We will sometimes use the notation µx(X) ≡
[µ(x)](X).

Definition 2. Let E and F be two observables on Ω1 and Ω2, respectively. We say that E

is a fuzzy observable with respect to F, or fuzzy version of F, if there exists a Markov kernel
µ : Ω2 → P (Ω1) such that

(13) pE

T (X) =

∫

Ω2

[µ(x)](X) dpF

T (x) ∀X ∈ B(Ω1), T ∈ S(H) .

The condition (13) can be written as

(14) E(X) =

∫

Ω2

[µ(x)](X) dF(x) ∀X ∈ B(Ω1)
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or, equivalently,

E(f) =

∫

Ω2

[µ(x)](f) dF(x) ∀f ∈ C0(Ω1)

where, as usual, the integrals are understood in the weak sense.
Definition 2 fits well with the concept of a fuzzy set. Namely, the mapping [µ(·)](X) is a

fuzzy set for each X ∈ B(Ω1). We can see the observable E as a composite mapping

X 7→ [µ(·)](X) 7→

∫

Ω2

[µ(x)](X) dF(x) = F([µ(·)](X)) .

The first mapping ’fuzzifies’ outcome sets and then the observable F is applied on these fuzzy
sets.

It is clear from (14) that if F is a commutative observable, then also its fuzzy version E

is commutative. In particular, all fuzzy versions of sharp observables are commutative. The
results of Section 4 imply that also the converse is true, namely, all commutative observables
are fuzzy versions of sharp observables.

Obviously, the representations for a commutative observable given in Section 4 are very close
to the definition of a fuzzy version. If the set of outcomes Ω is compact, then by taking into
account Proposition 2 we see that (7) in Proposition 5 gives E as a fuzzy version of P. To see
that the general (i.e. Ω not necessarily compact) representation form (9) formally satisfies the
properties of Definition 2, let E be a commutative observable on Ω. We then have the sharp
observable P given in Theorem 2. To show that E is a fuzzy version of P, we need to define
a corresponding Markov kernel µ from B(Ω)+ to P (Ω). Fix a probability measure ν0 ∈ P (Ω)
and define µ as

µ : ν 7→ ν if ν ∈ P (Ω) ; ν 7→ ν0 if ν ∈ B(Ω)+ \ P (Ω) .

Then µ is measurable and hence a Markov kernel. As stated in Theorem 2, the set B(Ω)+\P (Ω)
is a P-null set. Hence, we can write (9) in the form

E(X) =

∫

B(Ω)+
ν(X) dP(ν) =

∫

B(Ω)+
[µ(ν)](X) dP(ν) .

Therefore, E is a fuzzy version of P.

Example 1. Let us consider again the example discussed in the end of Section 4. Hence, let
ν be a fixed probability measure on R. It defines a Markov kernel

R ∋ x 7→ νx ∈ P (R) .

Here νx is the probability measure νx(X) = ν(x −X). The fuzzification of a set X ∈ B(R) is
now of the convolution form

X 7→ [1X ∗ ν](·) .

This type of Markov kernels can be defined in a similar way when Ω is some other lcsc group
than R. They typically arise in the situations where the observables under investigation have
a covariance property. We refer to [HLY04] for further details.
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Being a fuzzy observable with respect to some other observable is a relative notion - one has
to specify two observables that we are comparing together. We can also say that E is a fuzzy
observable without further specification if it is a fuzzy version of some other observable F and
this observable F is not a fuzzy version of E.

There are then also those observables which are not fuzzy observables. The following result
has been proven by Jenčová and Pulmannová in [JP07].

Proposition 6. A sharp observable P is not a fuzzy observable if and only if the von Neumann
algebra A(P) is a maximal commutative von Neumann subalgebra of L(H).

This shows, in particular, that the usual sharp observables describing physical quantities
such as position, momentum and spin of a particle and photon number of an electromagnetic
field are not fuzzy observables. We will give an other formulation of this property in Section 6.

It is interesting to note that not all physical quantities are described by sharp observables
and hence Proposition 6 cannot be applied to those cases. For instance, it would be interesting
to know whether some of the phase observables are fuzzy or not. (See Chapter III in [BGL97]
for an explanation of the phase observables and some other physical quantities not described
by sharp observables.)

Markov kernels can add different kind of fuzziness to outcome sets. First of all, a Markov
kernel can make outcome sets blurred. This happens, for instance, if in the situation of Example
1 the probability measure ν is of the form dν(x) = f(x)dx and f is some smooth function (e.g.
Gaussian function). This can typically model noise or imprecision in a measurement.

There is also another class of Markov kernels, which describe different kind of reduction.
Namely, it can happen that a Markov kernel maps sets into sets (and not into genuine fuzzy
sets), in which case there is thus no blurring. The possible reduction is now a consequence of
the fact that two or more outcomes may become identified as one.

This latter kind of situation corresponds to a Markov kernel µ determined by a measurable
function Φ : Ω2 → Ω1, i.e., µ(x) = δΦ(x) (δx is the Dirac measure at x). The function Φ simply
relabels the outcomes, possibly giving same label to several different outcomes. Eq. (14) now
reads

(15) E(X) = F(Φ−1(X)) ∀X ∈ B(Ω1) ,

which we also write as
E = F ◦ Φ−1 .

Our next proposition shows that fuzzification between two sharp observables can only be of
the non-blurring form (15). This result follows immediately by combining Propositions 1 and
2 in [Hol85] even in the more general case in which P2 is an observable (not necessarily sharp).
In this general form it has also been proved in [JP07]. In our case, it is a simple application of
Theorem 2. We present this new proof in order to illustrate the role of the uniqueness part of
Theorem 2

Proposition 7. Let P1 and P2 be sharp observables on Ω1, Ω2, respectively, with values in H.
If P1 is a fuzzy version of P2, then there exists a measurable function Φ : Ω2 → Ω1 such that
P1 = P2 ◦ Φ−1.
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Proof. Let B+
i = B(Ωi)

+. The map δ : Ω1 → B+
1 given by

[δ(x)](f) = f(x) ∀x ∈ Ω1, f ∈ C0(Ω1)

is a homeomorphism of Ω1 into δ(Ω1), and δ(Ω1) is a locally closed subset of B+
1 .

Let µ : Ω2 → B+
1 be a Markov kernel such that

(16) P1(f) =

∫

Ω2

[µ(x)](f) dP2(x) ∀f ∈ C0(Ω1) .

We claim that µ(x) ∈ δ(Ω1) for P2-almost all x. By eq. (16),

P1(f) =

∫

B+

1

ν(f) d(P2 ◦ µ
−1)(ν) .

On the other hand

P1(f) =

∫

Ω1

[δ(x)](f) dP1(x) =

∫

B+

1

ν(f) d(P1 ◦ δ
−1)(ν) .

By the uniqueness part in Theorem 2, we have

P2 ◦ µ
−1 = P1 ◦ δ

−1 .

It follows that µ−1(B+
1 \δ(Ω1)) is a P2-null set, i.e., there exists Z ∈ B(Ω2) such that P2(Z) = O

and µ(x) ∈ δ(Ω1) for all x ∈ Ω2 \ Z.
Setting Φ(x) = δ−1(µ(x)) for all x ∈ Ω2 \ Z and Φ(x) = constant for all x ∈ Z, we obtain a

measurable function Φ : Ω2 → Ω1, and

(P2 ◦ Φ−1)(X) = P2(Φ
−1(X) \ Z) = P2(µ

−1(δ(X)))

= P1(δ
−1(δ(X))) = P1(X) .

�

6. Joint measurability

In quantum measurement theory, the traditional compatibility relation between two observ-
ables is joint measurability. If a pair of observables is jointly measurable, then their mea-
surement outcome statistics can be recovered from the measurement statistics of a one single
observable. The basic fact in quantum mechanics states that there are pairs of observables
which are not jointly measurable. This opens up the room for many interesting questions.

The joint measurability relation and some related concepts are reviewed [Lah03]. Here we
just recall the definition and recommend this reference for more explanation. As in earlier
sections, we always suppose that Ω1,Ω2 are lcsc spaces.

Definition 3. Observables E1 and E2 are jointly measurable if there exists an observable G,
defined on the outcome space Ω1 × Ω2, such that

G(X × Ω2) = E1(X) , G(Ω1 × Y ) = E2(Y )

for all X ∈ B(Ω1) and Y ∈ B(Ω2). In this case G is a joint observable of E1 and E2.
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Having a one moment reflection on Definition 3, we notice that both E1 and E2 are special
kind of fuzzy versions of G. Namely, if Φi : Ω1 × Ω2 → Ωi is the projection on the i-th factor,
then Ei = G ◦ Φ−1

i .
This observation leads to a natural generalization of joint measurability. Namely, instead of

requiring that the observables E1 and E2 are marginals of some observable, we can be interested
whether they are fuzzy versions of one single observable. If this would be the case and G is
measured, we can calculate the measurement outcome distributions of E1 and E2. From this
point of view, there is little difference whether E1 and E2 are marginals or just fuzzy versions
of G.

It thus seems that the joint measurability requirement is too restrictive and one should
instead concentrate on the compatibility relation related to fuzzy versions. However, this latter
apparently more general relation is actually equivalent to joint measurability. This is the content
of the following statement. The same result has been obtained in Proposition 3 of [Hol85] using
a different method.

Proposition 8. Two observables E1 and E2 are jointly measurable if and only if there exists
an observable G such that both E1 and E2 are fuzzy versions of G.

As we have discussed above, the ’only if’ part of Proposition 8 is trivial since a marginal
observable of G is its particular type of fuzzy version. Before giving the proof of Proposition 8
in the general situation, we demonstrate the equivalence of these two conditions in the case of
finite outcome sets.

Let E1 and E2 be two observables with finite outcome sets Ω1 = {a1, . . . , am} and Ω2 =
{b1, . . . , bn}, respectively. To simplify the notation, we denote E1({ai}) ≡ E1(ai), and so on.
Suppose that E1 and E2 are both fuzzy versions of an observable G, which is defined on a finite
outcome set Ω. This means that we have Markov kernels µ and ν such that

E1(ai) =
∑

x∈Ω

µx(ai) G(x) , E2(bj) =
∑

x∈Ω

νx(bj) G(x) .

For every ai ∈ Ω1, bj ∈ Ω2, x ∈ Ω, denote

λx(ai, bj) = µx(ai)νx(bj) .

It is clear that 0 ≤ λx(ai, bj) ≤ 1 and

∑

ai,bj

λx(ai, bj) = 1 ∀x ∈ Ω .

Thus, λ is a Markov kernel.

We now define an observable G̃ with the outcome set Ω1 × Ω2 as

G̃(ai, bj) =
∑

x∈Ω

λx(ai, bj) G(x) .
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By its definition, G̃ is a fuzzy version of G. Moreover, a simple calculation gives
∑

ai∈Ω1

G̃(ai, bj) =
∑

x∈Ω

∑

ai∈Ω1

λx(ai, bj)G(x) =
∑

x∈Ω

νx(bj)G(x) = E2(bj)

and similarly ∑

bj∈Ω2

G̃(ai, bj) = E1(ai) .

We conclude that G̃ is a joint observable for E1 and E2.
Before proving Proposition 8, we need a small technical lemma.

Lemma 1. Let Σ,Ω1,Ω2 be lcsc spaces. Suppose µ : Σ → P (Ω1), ν : Σ → P (Ω2) are Markov
kernels. Then the mapping

λ : Σ → P (Ω1 × Ω2), λ(h) = µ(h) ⊗ ν(h)

is a Markov kernel.

Proof. If f1 ∈ C0(Ω1), f2 ∈ C0(Ω2), then the mapping

h 7→ [λ(h)](f1 ⊗ f2) = [µ(h)](f1)[ν(h)](f2)

is measurable by Proposition 3. If g ∈ C0(Ω1 × Ω2), then there is a sequence {gn}n∈N ⊂
C0(Ω1) ⊗ C0(Ω2) such that gn → g in the uniform norm. It follows that [λ(h)](gn) → [λ(h)](g)
for all h, and thus the mapping h 7→ [λ(h)](g) is measurable. Another application of Proposition
3 then gives the claim. �

Proof of Proposition 8. The proof in the general case follows the same lines as the finite outcome
example above.

Suppose that Ω1,Ω2 are the outcome spaces for E1,E2, respectively. We assume that both
E1 and E2 are fuzzy versions of the observable G, which is defined on the outcome space Ω. We

need to show that there exists a joint observable G̃ of E1 and E2.
For every X ∈ B(Ω1), Y ∈ B(Ω2), x ∈ Ω, denote

λ(x) = µ(x) ⊗ ν(x) .

Then the mapping x 7→ λ(x) is a Markov kernel by Lemma 1.

We define an observable G̃ by formula

G̃(Z) =

∫
[λ(x)](Z) dG(x) Z ∈ B(Ω1 × Ω2).

It follows directly from our construction that

G̃(X × Ω2) = E1(X) , G̃(Ω1 × Y ) = E2(Y )

for all X ∈ B(Ω1) and Y ∈ B(Ω2). Hence, G̃ is a joint observable of E1 and E2. �

In Section 5 we discussed about observables which are not fuzzy (in the absolute sense). This
property has an equivalent formulation in terms of joint measurements, which is expressed in
the next proposition.
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Proposition 9. Let E be an observable. The following conditions are equivalent:

(a) E is not a fuzzy observable.
(b) If F is another observable which is jointly measurable with E, then F is a fuzzy version

of E.

Proof. Suppose that (a) holds. Let F be an observable which is jointly measurable with E, and
let G be their joint observable. This means, in particular, that E is a fuzzy version of G. By
the assumption, this can happen only if G is a fuzzy version of E. The relation of ”being fuzzy
version” is transitive (see e.g. [Hei05]). Therefore, we conclude that F is a fuzzy version of E.
Thus, (b) holds.

Suppose then that (a) does not hold, i.e., E is a fuzzy observable. Then there is an observable
F such that E is a fuzzy version of F but F is not a fuzzy version of E. Since F is trivially fuzzy
version of itself, we conclude from Proposition 8 that E and F are jointly measurable. Hence,
(b) does not hold. �
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