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It has been recently shown that an observable that identifies all pure states of a d-dimensional
quantum system has minimally 4d−4 outcomes or slightly less (the exact number depending on the
dimension d) [1]. However, no simple construction of this type of observable with minimal number
of outcomes is known. In this work we investigate the possibility to have a covariant observable that
identifies all pure states and has minimal number of outcomes for this purpose. It is shown that the
existence of these kind of observables depends on the dimension of the Hilbert space. The fact that
these kind of observables fail to exist in some dimensions indicates that the dual pair of observables
– pure states lacks the symmetry that the dual pair of observables – states has.

PACS numbers: 03.65.Aa, 03.65.Wj, 03.65.Fd

I. INTRODUCTION

An observable is called informationally complete if it
identifies all states [2]. An informationally complete ob-
servable acting on a finite dimensional Hilbert space of
dimension d is called minimal if it has as small number of
outcomes as possible, and this smallest number is known
to be d2 [3].

Often, it is enough to concentrate on pure states. For
instance, we may have a prior knowledge that the other-
wise unknown state is pure and we want to identify it.
A measurement that identifies all pure states may not
be able to identify all states. In particular, this kind of
measurement can have have less outcomes than d2 when-
ever d ≥ 3. The minimal number of outcomes is roughly
4d − 4 and always less or equal to this [1]. In spite of
the quite precise knowledge about the minimal number
of outcomes, a simple or instructive construction of an
observable that identifies all pure states and has minimal
number of outcomes for this purpose is not known.

The present paper concentrates on minimal covariant
observables identifying all pure states. To explain the
problem, we start by recalling the standard construction
of a minimal covariant observable identifying all states.
First, fix an orthonormal basis {h0, . . . , hd−1} for a d-
dimensional Hilbert space Hd and let U be the shift op-
erator in this basis, i.e., Uhℓ = hℓ+1, with summation
modulo d. Then j 7→ U j is a unitary representation of
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the cyclic group Zd. We then define V to be the unitary
operator V hℓ = e2πiℓ/dhℓ, hence giving another unitary
representation k 7→ V k of the group Zd. The operators U
and V commute up to a scalar factor, V U = e2πi/dUV ,
thus the combined map W (j, k) := U jV k is a projective
unitary representation of the product group Zd×Zd. By
fixing a positive operator M satisfying tr [M ] = 1/d and
setting

M(j, k) := W (j, k)MW (j, k)∗ , j, k ∈ Zd (1)

we obtain an observable M with d2 outcomes. This con-
struction also guarantees that M is covariant, i.e.,

W (j′, k′)M(j, k)W (j′, k′)∗ = M(j + j′, k + k′) (2)

for all (j, k), (j′, k′) ∈ Zd × Zd. In order to obtain in-
formationally complete observable one has to choose M
such that tr [MW (j, k)] 6= 0 for all j, k ∈ Zd; see e.g. [4],
[5].
In this paper we address the following question: Is it

possible to construct a covariant observable that identi-
fies all pure states and has the minimal number of out-
comes for this purpose? For dimension 2 the answer is
positive since a qubit observable identifies all pure states
only if it identifies all states [1], thus the previous con-
struction gives an observable with the desired properties.
One could presume that a similar construction should
be possible in all dimensions, perhaps using a different
symmetry group. However, we prove that the answer to
the existence question depends on the dimension of the
Hilbert space. More precisely, we construct a class of
observables with the required properties in dimension 3
using the group of unit quaternions, but we show that
they do not exist in dimension 7 (and certain other di-
mensions).
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An interesting additional fact is that while the previ-
ously sketched general construction uses an irreducible
projective representation of an abelian group, the anal-
ogous construction for a pure-state informationally com-
plete observable in dimension 3 is forced to use a re-
ducible unitary representation of a non-abelian group.
Our investigation is organized as follows. Sections II

and III give some essential background information on
pure-state informationally complete observables and co-
variant observables, respectively. In Section IV we de-
rive some general conditions for the existence of covariant
pure-state informationally complete observables. Then,
in Section V we add the requirement of minimal num-
ber of outcomes and prove the main results. Finally, in
Section VI we outline our conclusions and sketch some
further developments and generalizations.

II. PURE-STATE INFORMATIONALLY

COMPLETE OBSERVABLES

Throughout this paper, by a Hilbert space we will al-
ways mean a finite dimensional complex Hilbert space. If
H is a Hilbert space, we denote by L(H) the vector space
of all linear operators on H. It is a Hilbert space itself
when equipped with the Hilbert-Schmidt inner product,

〈L1 |L2 〉HS = tr [L∗
1L2] .

A quantum state is described by a positive operator ̺ ∈
L(H) satisfying tr [̺] = 1; it is a pure state if ̺ is a
1-dimensional projection.
Quantum observables are described and identified with

positive operator valued measures (POVMs). A POVM
with finite number of outcomes is a mapping M from a
finite set Ω into positive operators onH, which is required
to satisfy the normalization

∑
x M(x) = 1; here 1 is the

identity operator on H. The probability of obtaining an
outcome x when the system is in a state ̺ is tr [̺M(x)].
We will be interested on the following two properties.

Definition 1. An observable M is called

(a) informationally complete (IC) if for any two dif-
ferent states ̺1, ̺2, there is at least one outcome
x ∈ Ω such that tr [̺1M(x)] 6= tr [̺2M(x)].

(b) pure-state informationally complete (PIC) if for
any two different pure states ̺1, ̺2, there is at
least one outcome x ∈ Ω such that tr [̺1M(x)] 6=
tr [̺2M(x)].

To be able to write down mathematical criteria for the
above properties, we introduce some additional notation.
For each observable M, we denote by SM the linear span
of the range of M, i.e.,

SM := span {M(x) : x ∈ Ω} = {ΣxcxM(x) : cx ∈ C} .

It is well-known that an observable M is informationally
complete if and only if SM = L(H) [6].

For any subset S ⊆ L(H), we denote by S⊥ the or-
thogonal complement of S in the Hilbert-Schmidt inner
product. In particular, for each observable M we have

S⊥
M ={T ∈ L(H) : tr [T ∗S] = 0 ∀S ∈ SM}

={T ∈ L(H) : tr [TM(x)] = 0 ∀x ∈ Ω} .

Clearly, S⊥
M

is a linear subspace of L(H) and tr [T ] = 0
for every T ∈ S⊥

M
because

tr [T ] = tr [T1] =
∑

x

tr [TM(x)] = 0 .

If H is d-dimensional, then L(H) has dimension d2.
Since L(H) can be written as L(H) = SM⊕S⊥

M
, we obtain

dim(SM) + dim(S⊥
M
) = d2 .

Notice that if M is injective and the set {M(x) : x ∈ Ω}
is linearly independent, then dim(SM) is just the number
of outcomes of M.

We recall the following result from [1].

Proposition 1. An observable M is pure-state informa-
tionally complete if and only if every nonzero selfadjoint
operator in S⊥

M
has rank 3 or more.

If S⊥
M

= {0} (equivalently SM = L(H)), then the condi-
tion in Proposition 1 is satisfied. But then M is actually
informationally complete with respect to all states and
must have at least d2 outcomes.

To obtain an observable M that is pure-state informa-
tionally complete and has as few outcomes as possible, we
obviously need to choose SM to have as small dimension
as possible while assuring that the condition stated in
Proposition 1 holds. The first basic question then arises:

If a linear subspace S ⊆ L(H) is given, is
it possible to find an observable M such that
S = SM?

An easy construction [1] shows that the question has an
affirmative answer if and only if

1 ∈ S and S∗ = S , (3)

where the last condition means that L∗ ∈ S whenever
L ∈ S. Moreover, in this case there exists M with exactly
dim(S) outcomes such that S = SM, but not with less.

A more complicated task is to deduce the smallest
possible dimension of a subspace S ⊆ L(H) satisfying
(3) and the criterion of Proposition 1, hence giving the
minimal number of outcomes for a PIC observable. It
was proved in [1] that the minimal number of outcomes
for a PIC observable in d-dimensional Hilbert space is
4d− 4 − δ(d), where 0 ≤ δ(d) ≤ 2 log2(d). The minimal
numbers for the dimensions 2− 15 are listed in Table I.
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TABLE I: The minimal number of outcomes for a PIC observ-
able in the dimensions 2− 15. The exact value is not known
in every dimension, but the uncertainty is at most 2 log

2
(d).

dimension min # of outcomes

2 4

3 8

4 10

5 16

6 18

7 23

8 24 or 25

9 32

10 34

11 39

12 40 or 41

13 47

14 48 or 49

15 54

III. COVARIANT OBSERVABLES

A. Projective unitary representations

The usual complication in any implementation of sym-
metry in a quantum system is that we cannot apriori re-
strict to unitary representations; instead, we have to deal
with more general objects of projective unitary represen-
tations. In this subsection we recall some basic concepts
and results related to projective unitary representations
of finite groups. For more details, we refer to [7].
Let G be a finite group. (In the rest of this paper,

all groups are assumed to be finite even if this is not
constantly repeated.) A projective unitary representation
ofG is a mapping g 7→ U(g) fromG into the set of unitary
operators on H such that U(e) = 1 and

U(gh) = ω(g, h)U(g)U(h) , (4)

with ω(g, h) ∈ T (T denoting the group of unimodular
complex numbers). The mapping ω : G×G → T, defined
through (4), is called themultiplier of U and it is required
to satisfy

ω(g, e) = ω(e, g) = 1 ∀g ∈ G

ω(g, hk)ω(h, k) = ω(g, h)ω(gh, k) ∀g, h, k ∈ G .

Clearly, a unitary representation of G is a special type of
a projective unitary representation; in that case ω(g, h) =
1 for all g, h ∈ G.
From the quantum theoretic point of view, only trans-

formation of rays of vectors is relevant. Therefore, if we
multiply unitary operators U(g) with numbers f(g) ∈ T,
we get a new projective representation g 7→ f(g)U(g) but

the transformation of rays has not been changed. Two
projective unitary representations U and U ′ are called
similar if there exists a function f : G → T such that
U ′(g) = f(g)U(g) for all g ∈ G. A projective unitary
representation U is similar to a unitary representation if
and only if its multiplier ω is exact, i.e., there exists a
function f : G → T such that

ω(g, h) = f(g)f(h)f(gh) ∀g, h ∈ G . (5)

Indeed, this is equivelent to U being similar to the unitary
representation U ′ given by U ′(g) = f(g)U(g)

Example 1. (Cyclic groups) Every projective unitary
representation U of the cyclic group Zd is similar to a
unitary representation. Namely, a repeated application
of (4) shows that, for each k ∈ Z, there exists α(k) ∈ T
such that

U(1)k = α(k)U(k (mod d)) . (6)

Let α(d) = eiθ, θ ∈ R, and, for each k ∈ Z, define

U ′(k) :=
(
e−

iθ
d U(1)

)k
= e−

ikθ
d α(k)U(k (mod d)) . (7)

Clearly, U ′ is a unitary representation of Z. Moreover,
U ′ factors to a unitary representation of Zd as

U ′(d) = e−iθα(d)1 = 1 .

Finally, U and U ′ are similar by (7).

In our later investigations the following criterion will
be useful. (Recall that a subspace K ⊂ H is called U -
invariant if U(g)v ∈ K for all g ∈ G and v ∈ K.)

Proposition 2. If a projective unitary representation U
has an invariant 1-dimensional subspace, then it is sim-
ilar to a unitary representation.

Proof. Let U be a projective unitary representation with
an invariant 1-dimensional subspace. Hence, there exists
a nonzero vector v ∈ H such that U(g)v ∈ Cv for all
g ∈ G. We can thus define a map f : G → T such that
U(g)v = f(g)v. It follows that

f(gh)v = U(gh)v = ω(g, h)U(g)U(h)v

= ω(g, h)f(g)f(h)v .

Therefore, ω(g, h) = f(gh)f(g)f(h), hence ω is an exact
multiplier.

A useful trick when having a projective unitary repre-
sentation U is to pass from U to a related unitary repre-

sentation Ũ that acts in the Hilbert space L(H) of oper-
ators. For each g ∈ G and L ∈ L(H), we define

Ũ(g)L := U(g)LU(g)∗ . (8)
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Notice that even if U is a projective unitary representa-

tion, Ũ is an ordinary unitary representation, since

Ũ(gh)L = ω(g, h)ω(g, h)U(g)U(h)LU(h)∗U(g)∗

= Ũ(g)Ũ(h)L .

Moreover, it is easy to see that U(g) commutes with an

operator L ∈ L(H) if and only if Ũ(g)L = L. Since every
operator U(g) commutes with the identity operator 1, we
conclude that the 1-dimensional subspace C1 is invariant

under Ũ . In particular, Ũ is a reducible representation
whenever dimH ≥ 2.

B. Structure of covariant observables

We will next recall some basic facts about covariant
observables. More details and further references can be
found e.g. in [8].
Let H be a (proper) subgroup of the group G. In the

following, we will choose Ω ≡ G/H , i.e., our outcome
space will be the quotient space consisting of left cosets
gH = {gh : h ∈ H}, g ∈ G. We do not assume that
H is a normal subgroup, therefore G/H need not be a
group. However, there is a natural action of G on G/H ;
for each g′ ∈ G and gH ∈ Ω, we denote by g′ · gH the
left coset g′gH . This action is transitive, meaning that
for any two points g1H, g2H ∈ Ω, there exists g ∈ G such
that g(g1H) = g2H .
Let U be a projective unitary representation of G.

Then G acts, on the one hand, on the outcome space Ω,
and on the other hand, on the space L(H) through the

unitary representation Ũ . A covariant observable has the
property of intertwining these two actions.

Definition 2. An observable M based on Ω is U -
covariant if

Ũ(g)M(x) = M(g · x) (9)

for all g ∈ G, x ∈ Ω.

It follows from (9) that

Ũ(g)SM = SM (10)

for all g ∈ G, meaning that SM is a Ũ -invariant subspace.

This implies that also S⊥
M

is a Ũ -invariant subspace. The

unitary representation Ũ therefore splits into the direct
sum

Ũ = ŨSM ⊕ ŨS⊥

M , (11)

where ŨSM and ŨS⊥

M are the restrictions of Ũ to SM and
S⊥
M
, respectively.
We also see that a U -covariant observable M must be

of the form

M(gH) = Ũ(g)M (12)

for some positive operator M ∈ L(H). Namely, we de-
noteM ≡ M(eH) for the identity element e ∈ G and then
(12) follows from (9). Notice that if g′, g ∈ G are such
that g′ ∈ gH , then M(g′H) = M(gH), implying that

U(g)MU(g)∗ = U(g′)MU(g′)∗ . (13)

This means that [M,U(h)] = 0 for all h ∈ H .
If we start from a positive operator M ∈ L(H) satisfy-

ing [M,U(h)] = 0 for all h ∈ H and define M by formula
(12), then the positivity and the covariance condition (9)
holds but we need to check that

∑
xM(x) = 1 in order

to get an observable. This normalization is not automat-
ically satisfied, and the suitable operators M depend on
the projective representation U .

Example 2. (Irreducible projective representation) Sup-
pose that a projective unitary representation U of G is
irreducible. Fix a nonzero positive operator M ∈ L(H)
and define M on G as M(g) = U(g)MU(g)∗. In this
example H = {e}, hence the commutativity condition
[M,U(h)] = 0 for all h ∈ H puts no constrains on M .
For every g′ ∈ G, we have

U(g′)

(
∑

g

M(g)

)
=
∑

g

U(g′)U(g)MU(g)∗

=
∑

g

ω(g′, g)U(g′g)MU(g)∗U(g′)∗U(g′)

=

(
∑

g

M(g)

)
U(g′) .

Therefore,
∑

g M(g) = c1 for some c ∈ R, and we see
that

c = tr

[
∑

g

M(g)

]
/tr [1] = #G · tr [M ] /d .

Redefining M → 1
cM we thus obtain a covariant observ-

able.

C. Existence of covariant observables

Let U be a projective unitary representation of G. We
now pose our earlier question in a modified form:

If a linear subspace S ⊆ L(H) is given, is it
possible to find a U -covariant observable M

such that S = SM?

Obviously, S must satisfy the basic criterion (3) and the

Ũ -invariance requirement (10), i.e.,

1 ∈ S , S = S∗ , Ũ(g)S = S ∀g ∈ G . (14)

But it will turn out that these conditions are not suffi-
cient.



5

As we have seen earlier, for every U -covariant observ-
able M, there is a positive operator M ∈ L(H) such that
(12) holds. It follows that

SM = span
{
Ũ(g)M : g ∈ G

}
. (15)

Therefore, the answer to the existence question can be
affirmative only if there exists a positive operator M ∈ S
such that

S = span
{
Ũ(g)M : g ∈ G

}
. (16)

In mathematical terms, this condition means that M is a

cyclic vector for the subrepresentation ŨS , the restriction

of Ũ on the invariant subspace S. Before we present a
result that gives an important necessary condition to the
existence question, let us recall the concepts of Schmidt
rank and cyclic representation.
Let H1,H2 two Hilbert spaces. A vector v ∈ H1 ⊗H2

can be written in the so-called Schmidt form

v =
∑

j

√
λjv

(1)
j ⊗ v

(2)
j , (17)

where {v
(1)
j } ⊂ H1 and {v

(2)
j } ⊂ H2 are orthogonal

sets. The number of nonzero coefficients λj is called the
Schmidt rank of v and we denote it by rank v. Let us
notice that the Schmidt rank of v is the same as the rank
of v regarded as a linear operator from H∗

1 to H2.
Let V be a representation of G acting on the Hilbert

space H. A vector v ∈ H is cyclic for V if the linear span
of the set {V (g)v : g ∈ G} is H. If there exists a cyclic
vector, then we say that V is a cyclic representation.
The following result is a particular case of [9, Theorem

1.10], the only difference being that we provide an explicit
way to construct cyclic vectors.

Proposition 3. Let Ĝ be the (finite) set of irreducible

unitary representations of G, each π ∈ Ĝ acting in the
Hilbert space Kπ. Then we have the following facts.

(1) Let π ∈ Ĝ, and suppose v ∈ Kπ ⊗ Vπ. Then the
vector v is cyclic for the representation π ⊗ 1Vπ

if and
only if rank v = dimVπ.
(2) Suppose V is a unitary representation of G in H,

and let

H = ⊕π∈ĜKπ ⊗ Vπ V = ⊕π∈Ĝ π ⊗ 1Vπ

be the isotypic decomposition of V . Here, dimVπ is the
multiplicity of each irreducible unitary representation π

in V . For each π ∈ Ĝ, let Pπ : H → Kπ ⊗ Vπ be the pro-
jection of H onto Kπ⊗Vπ. Then, a vector v ∈ H is cyclic
for V if and only if Pπv is cyclic for the representation

π ⊗ 1Vπ
for all π ∈ Ĝ.

(3) With the notations of item (2), V is a cyclic repre-

sentation if and only if dimVπ ≤ dimKπ for all π ∈ Ĝ.

Proof. (1) For a fixed a linear basis {k1, k2, . . . , kd} of
Kπ, with dual basis {k∗1 , k

∗
2 , . . . , k

∗
d}, there exist vectors

{v1, v2, . . . , vd} in Vπ such that

v =
∑

i

ki ⊗ vi .

Clearly, the dimension of the linear space V0
π =

span {v1, v2, . . . , vd} is the rank of v.
By irreducibility of the representation π, the alge-

bra A = span {π(g) : g ∈ G} coincides with the whole
L (Kπ). Indeed, its commutant A′ = C1Kπ

by Schur
lemma, hence A = A′′ = L (Kπ). For all k ∈ Kπ, the
operator A = kk∗i thus belongs to A, and (A ⊗ 1Vπ

)v =
k ⊗ vi. It follows that

span {(π(g) ⊗ 1Vπ
)v : g ∈ G} = (A⊗ 1Vπ

)v ⊇ Kπ ⊗ V0
π .

On the other hand, the reverse inclusion is trivial, hence
the equality

span {(π(g)⊗ 1Vπ
)v : g ∈ G} = Kπ ⊗ Vπ

holds if and only if V0
π = Vπ, i.e., rank v = dimVπ.

(2) Each map Pπ : H → Kπ ⊗ Vπ satisfies PπV (g) =
(π(g) ⊗ 1Vπ

)Pπ for all g. If v ∈ H is cyclic for V , then
necessarily Pπv is cyclic for π ⊗ 1Vπ

, as the condition

0 = 〈 (π(g) ⊗ 1Vπ
)Pπv |Pπw 〉

= 〈V (g)v |Pπw 〉 ∀g ∈ G

implies Pπw = 0. Conversely, suppose that Pπv is cyclic

for π ⊗ 1Vπ
for all π ∈ Ĝ, and let w ∈ H be such that

〈V (g)v |w 〉 = 0 for all g ∈ G. By [10, Théorème 8],

Pπ =
dimKπ

#G

∑

g

tr [π(g)]V (g) ,

which implies

〈 (π(g)⊗ 1Vπ
)Pπv |Pπw 〉 = 〈V (g)v |Pπw 〉

=
dimKπ

#G

∑

h

tr [π(h)] 〈 V (g)v |V (h)w 〉

=
dimKπ

#G

∑

h

tr [π(h)]
〈
V (h−1g)v |w

〉

= 0 .

By cyclicity of Pπv in Kπ ⊗Vπ, then it follows Pπw = 0.

Since this holds for all π ∈ Ĝ, we have w = 0. Hence, v
is cyclic for V .
(3) If v ∈ H is a cyclic vector for V , then Pπv must be

cyclic for π⊗1Vπ
for all π ∈ Ĝ by item (2). By item (1),

this implies rankPπv = dimVπ, which can happen only
if dimVπ ≤ dimKπ.

Let F(G) be the vector space of all complex val-
ued functions on G, with the inner product 〈 f1 | f2 〉 =
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∑
g f1(g)f2(g). We recall that the regular representation

R of G acts on F(G) and is defined as

[R(g)φ](g′) = φ(g−1g′) . (18)

The regular representation is reducible and each irre-

ducible unitary representation π ∈ Ĝ occurs in F(G)
with a multiplicity equal to its dimension. Therefore,
from Proposition 3 we conclude the following conse-
quence.

Corollary 1. Let V be a unitary representation of G.
Then V is a cyclic representation if and only if it is equiv-
alent to a subrepresentation of the regular representation
R of G.

Example 3. (Representation consisting of 1-
dimensional irreps.) Suppose that V is a direct
sum of 1-dimensional representations of G. Then V is
cyclic if and only if every 1-dimensional representation

χ ∈ Ĝ is contained in V at most once. Indeed, the
regular representation contains each 1-dimensional
representation exactly once. The claim thus follows from
Corollary 1.

IV. EXISTENCE OF COVARIANT PIC

OBSERVABLES

It has now become clear that the existence of a covari-
ant observable that is pure-state informationally com-
plete depends crucially on the group G and its projective
unitary representation U . In this section we derive some
conditions that preclude the existence of a U -covariant
PIC observable.

Proposition 4. Let U be a projective unitary represen-
tation of the group G on H. Suppose there exist two
linearly independent vectors v1, v2 ∈ H and functions
f1, f2 : G → T such that U(g)vi = fi(g)vi for all g ∈ G
and i ∈ {1, 2}. Then there exists no U -covariant PIC
observable.

Proof. We define two pure states ̺i = |vi〉〈vi|/ ‖vi‖
2
, i =

1, 2 and we will show that no U -covariant observable can
separate these states. Notice that ̺1 6= ̺2 by the linear
independence of {v1, v2}.
Suppose M is a U -covariant observable based on a quo-

tient space Ω = G/H and let i ∈ {1, 2}. Then, for every
x = gH ∈ Ω,

tr [M(gH)̺i] = tr [U(g)M(eH)U(g)∗̺i]

= fi(g)fi(g)tr [M̺i] = tr [M̺i] ,

hence the map x 7→ tr [M(x)̺i] is constant. Since
∑

x

tr [M(x)̺i] = tr [1̺i] = 1 , (19)

we must have

tr [M(x)̺i] =
1

#Ω
∀x ∈ Ω . (20)

In particular, tr [M(x)̺1] = tr [M(x)̺2] for all x ∈ Ω.
Therefore, M is not PIC.

Proposition 5. Let G be an abelian group and dimH ≥
2. Then, in the following two cases there exists no U -
covariant PIC observable:

(a) if U is a unitary representation;

(b) if G is cyclic and U is a projective unitary repre-
sentation.

Proof. (a) If U is a unitary representation, then the
Hilbert space H decomposes into the orthogonal sum of
1-dimensional subrepresentations, each one carrying the
action of a 1-dimensional unitary representation of G.
Then the claim follows by Proposition 4.
(b) If G is cyclic and U is a projective unitary repre-

sentation, then U is similar to a unitary representation
(see Example 1), and the claim follows from (a).

V. EXISTENCE OF COVARIANT AND

MINIMAL PIC OBSERVABLES

In this section we combine the earlier concepts and
methods and search for a minimal PIC observable that is
covariant under some projective unitary representation of
some finite group. As it turns out, the existence of such
an observables depends on the Hilbert space dimension d.
In particular, we will investigate the existence question
for the dimensions d = 3 and d = 7. These two instances
demonstrate that a desired observable may exist or not.

A. Dimension 3

We first investigate the case when the dimension of H
is 3. We want to find an observable M such that M is
PIC and has minimal number of outcomes, and further
that M is covariant with respect to some group G. We
will restrict our search for observables based on Ω ≡ G
since already in this situation we can find two possible
symmetry groups.

The minimal number of outcomes for a PIC in dimen-
sion 3 is 8 [1]. There are five groups with 8 elements:
three abelian groups Z8, Z2 × Z4, Z2 × Z2 × Z2 and two
non-abelian groups D (dihedral group) and Q (quater-
nionic units). We will show that the abelian groups are
unsuitable while the non-abelian groups can be used to
construct a desired observable.

Let G be a group with 8 elements, U a projective uni-
tary representation of G and M a U -covariant PIC ob-
servable on G. In the following we will proceed in steps
to reveal the limitations in the choice of G and U .
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• Projective representation U must be reducible

For a minimal PIC observable M we have dimSM = 8,
hence the orthogonal space S⊥

M
is generated by a single

selfadjoint operator T which satisfies tr [T ] = 0 and by
Proposition 1 must have rank 3, i.e., is invertible. Thus,
from (10) it follows that

U(g)TU(g)∗ = cgT ∀g ∈ G (21)

for some numbers cg ∈ R. This implies that

det(T ) = det(U(g)TU(g∗)) = det(cgT ) = c3g det(T ) .

Since det(T ) 6= 0, we conclude that cg = 1 for every
g ∈ G. Therefore,

U(g)T = TU(g) ∀g ∈ G . (22)

But since tr [T ] = 0, we see that T cannot be a scalar
multiple of the identity operator. Therefore, the projec-
tive representation U is reducible.

• Projective representation U is similar to an

ordinary unitary representation

We can infer more about U by using the spectral de-
composition for T . By changing T to −T if necessary
(this does not change S⊥

M
), we can write T as

T = λ1P1 − λ2P2 − λ3P3 , (23)

where λj > 0, λ1 = λ2+λ3 and P1, P3, P3 are orthogonal
1-dimensional projections. Depending on the eigenvalues
of T , we have two alternative situations:

(a) If λ2 6= λ3, then U commutes with each of the three
projections P1, P2 and P3.

(b) If λ2 = λ3, then U commutes with P1 and P2 + P3

(but not necessarily with P2 and P3 separately).

In both cases U leaves invariant the 1-dimensional sub-
space P1H. By Proposition 2 we conclude that U is sim-
ilar to an ordinary unitary representation.

• Symmetry group must be non-abelian

We have seen that U must be an ordinary unitary rep-
resentation of G. It follows from Proposition 5 that the
symmetry group Gmust be non-abelian, hence either the
dihedral group D or the group of unit quaternions Q.
The two situations that were separated according to

the eigenvalues of T lead to different conclusions:

(a) If λ2 6= λ3, then U leaves invariant all the 1-
dimensional spaces P1H, P2H and P3H. By Propo-
sition 4, there exists no U -covariant PIC observ-
able.

TABLE II: The 1-dimensional irreducible representations of
the quaternionic group Q and the dihedral group D.

irrep value in the case of Q value in the case of D

χ0(g) 1 ∀g 1 ∀g

χ1(g) 1 if g ∈ {±1 , ±iσ1} 1 if g ∈ {±1 , ±iσ1}

-1 otherwise -1 otherwise

χ2(g) 1 if g ∈ {±1 , ±iσ2} 1 if g ∈ {±1 , ±σ2}

-1 otherwise -1 otherwise

χ3(g) 1 if g ∈ {±1 , ±iσ3} 1 if g ∈ {±1 , ±σ3}

-1 otherwise -1 otherwise

(b) If λ2 = λ3, then U leaves invariant the 1-
dimensional space P1H and the 2-dimensional
space (P2 + P3)H. If the space (P2 + P3)H is ir-
reducible, then Proposition 4 does not exclude the
existence of U -covariant PIC observables. To de-
termine whether U -covariant PIC observables exist
or not, one further needs to establish if the repre-

sentation Ũ is cyclic.

• Quaternionic and dihedral symmetry groups

The quaternionic group Q consists of 8 elements
±1,±i,±j,±k satisfying the relations

(−1)2 = 1 (±1)g = g(±1) = ±g ∀g ∈ Q

i2 = j2 = k2 = −1 ij = −ji = k .
(24)

For our purposes, it is convenient to use a matrix re-
alization of Q. We denote by M2(C) the Hilbert space
of complex 2 × 2 matrices, equipped with the Hilbert-
Schmidt inner product. The identity matrix 1 together
with the Pauli matrices σ1, σ2, σ3 form an orthogonal ba-
sis ofM2(C). The quaternionic group Q can be described
as the collection of matrices {±1 , ±σ1 , ±σ2 , ±σ3}, en-
dowed with the usual matrix product rule, according to
the correspondence

±1 ↔ ±1 , ±i ↔ ±iσ1 , ±j ↔ ∓iσ2 , ±k ↔ ±iσ3 .

The dual Q̂ consists of four 1-dimensional unitary rep-
resentations and a single 2-dimensional unitary represen-
tation. The 2-dimensional unitary representation is the
identity map π(g) = g, and the 1-dimensional represen-
tations are given in Table II.
The unitary representation

π̃(g)L := π(g)Lπ(g)∗ ∀L ∈ M2(C)

decomposes into the direct sum

M2(C) = C1⊕Cσ1⊕Cσ2⊕Cσ3 , π̃ = χ0⊕χ1⊕χ2⊕χ3 .
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The contragradient representation π̄ in the dual space
C2 ∗ of row vectors is defined as

π̄(g)vt := vtπ(g−1) ∀v ∈ C2 . (25)

The representation π̄ is equivalent to π, and an intertwin-
ing operator V : C2 ∗ → C2 is given by

V vt = σ2v ∀v ∈ C2 . (26)

In the following it is convenient to use block form for
matrices, for instance

(
0 v̄t

v 0

)
≡




0 v1 v2
v1 0 0

v2 0 0




where v1, v2 are the components of the vector v ∈ C2.
We now consider the Hilbert space H = C3 and intro-

duce the following unitary representation U in H:

U(g) =

(
1 0

0 π(g)

)
. (27)

If λ > 0 and T is defined as

T =

(
2λ 0

0 −λ1C2

)
, (28)

then clearly tr [T ] = 0 and U(g)TU(g)∗ = T for all g.
These choices satisfy the necessary requirements found
earlier; U is reducible and T has a degenerate eiegenvalue.
With these preliminary observations, we are ready for

the following result.

Proposition 6. Let M ∈ L(H) be the operator

M =
1

8
1+ α1

(
0 0

0 σ1

)
+ α2

(
0 0

0 σ2

)
+ α3

(
0 0

0 σ3

)

+

(
0 v̄t

v 0

)
(29)

with

α1 , α2 , α3 ∈ R , v ∈ C2

such that

α1 6= 0 , α2 6= 0 , α3 6= 0 (30)

v 6= 0 (31)

and

M ≥ 0 . (32)

Then the map

M(g) = U(g)MU(g)∗ , g ∈ Q (33)

is a U -covariant observable. Moreover, SM = T⊥, hence
M is a PIC with minimal number of outcomes.

Proof. We first show that SM = T⊥, i.e., the operator M
is a cyclic vector for the restriction of the representation

Ũ to the invariant subspace T⊥ of L(H). Under the

action of Ũ , the space T⊥ decomposes into the direct
sum of irreducible invariant subspaces

T⊥ = C1⊕ C

(
0 0

0 σ1

)
⊕ C

(
0 0

0 σ2

)
⊕ C

(
0 0

0 σ3

)

⊕

(
0 C∗2

0 0

)
⊕

(
0 0

C2 0

)
,

and according to such splitting the representation Ũ re-
stricted to T⊥ decomposes as

Ũ = χ0 ⊕ χ1 ⊕ χ2 ⊕ χ3 ⊕ π̄ ⊕ π .

As π and π̄ are equivalent, the representations π̄ ⊕ π
and π ⊗ 1C2 are equivalent. A linear map

W :

(
0 C∗2

0 0

)
⊕

(
0 0

C2 0

)
→ C2 ⊗ C2

explicitely yelding this equivalence is given by

W

(
0 ut

v 0

)
= v ⊗

(
1

0

)
+ V ut ⊗

(
0

1

)
,

where V is the map defined in (26). The condition
(31) is the same of V v̄t /∈ Cv (indeed, σ2v̄ /∈ Cv if
and only if v 6= 0), which in turn is equivalent to

rankW

(
0 v̄t

v 0

)
= 2. By item (1) of Proposition 3,

this implies that the vector

(
0 v̄t

v 0

)
is cyclic for the

subrepresentation π̄⊕ π ≃ π⊗ 1C2 of Ũ . Moreover, each

1-dimensional subrepresentation χi of Ũ is clearly cyclic.

Condition (30) and the cyclicity of

(
0 v̄t

v 0

)
then imply

that M is cyclic in T⊥ by item (2) of Proposition 3, as
claimed.
We still need to show that M is an observable. First,

since M is of the form (33) and M ≥ 0, it follows that
every M(g) is positive. Second, we need to prove that
ΣgM(g) = 1. We denote

A :=
∑

g

M(g) . (34)

Then, U(g)A = AU(g) for all g. It follows that

A =

(
β1 0

0 β21C2

)
β1, β2 ∈ C . (35)

Since A ∈ T⊥, we have tr [AT ] = 0, which implies β1 =
β2. On the other hand,

tr [A] =
∑

g

tr [M(g)] = 8 · tr [M ] = 8 · tr [(1/8)1] = 3 ,
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therefore β1 = β2 = 1. This means that A = 1.

Remark 1. The nonzero eigenvalues of the matrices

α1

(
0 0

0 σ1

)
+ α2

(
0 0

0 σ2

)
+ α3

(
0 0

0 σ3

)
(36)

and
(

0 v̄t

v 0

)
(37)

are ±
√
α2
1 + α2

2 + α2
3 and ±

√
|v1|2 + |v2|2, respectively.

Therefore, the positivity condition (32) is satisfied if we
choose α1, α2, α3 and v such that

√
α2
1 + α2

2 + α2
3 +

√
|v1|2 + |v2|2 ≤

1

8
.

However, this inequality is not a necessary condition for
(32) to hold, but only a convenient sufficient condition.

Example 4. (Rank-1 PIC observable) Suppose γ ∈
[0, 2π) and α1, α2, α3 are nonzero real numbers satisfy-
ing α2

1 + α2
2 + α2

3 = 1/64. Then the operator

M =




1
8

e−iγ√1+8α3

8
e−iγ(α1−iα2)√

1+8α3

eiγ
√
1+8α3

8
1
8 + α3 α1 − iα2

eiγ(α1+iα2)√
1+8α3

α1 + iα2
1
8 − α3




is of the form (29) and satisfies conditions (30) and
(31). Moreover, a direct calculation yelds M2 = (3/8)M ,
which shows that M ≥ 0 and rankM = 1. It follows
from Proposition 6 that the map g 7→ U(g)MU(g)∗ is a
U -covariant PIC observable.

Except some minor details, the previous construction
can be done by using the dihedral group D instead of
the quaternionic group Q. We briefly explain the needed
modifications. It is convenient to describe D as a collec-
tion of 2× 2 complex matrices,

D = {1 , −1 , iσ1 , −iσ1 , σ2 , −σ2 , σ3 , −σ3} .

As in the case of Q, the dual D̂ consist of four 1-
dimensional unitary representations and a single 2-
dimensional unitary representation. The 2-dimensional
unitary representation is the identity map π(g) = g , and
the 1-dimensional representations are given in Table II.
The unitary representation

π̃(g)L := π(g)Lπ(g)∗ ∀L ∈ M2(C)

decomposes into the direct sum

M2(C) = C1⊕Cσ1⊕Cσ2⊕Cσ3 , π̃ = χ0⊕χ1⊕χ2⊕χ3 .

The contragradient representation π̄ in the dual space
C2 ∗ of row vectors is defined as

π̄(g)vt := vtπ(g−1) ∀v ∈ C2 , (38)

TABLE III: The dimensions d ≤ 1000 that are known to have
the property that the number of outcomes of a minimal PIC
is a prime number.

dimension min # of outcomes

7 23

13 47

19 71

21 79

49 191

67 263

69 271

97 383

259 1031

261 1039

273 1087

289 1151

321 1279

517 2063

529 2111

and it is equivalent to π. An intertwining operator V :
C2 ∗ → C2 is given by

V vt = σ3v ∀v ∈ C2 . (39)

The unitary representation U and the operator T are
defined similarly as in (27) and (28), respectively. Then,
Proposition 6 holds if the condition (31) is replaced with

|v1| 6= |v2| . (40)

B. Dimension 7

If the dimension of the Hilbert space H is 7, then,
according to Table I, the minimal number of outcomes
for a PIC observable is 23, which is a prime number. The
next result shows that, if p is a prime number, there are
no covariant PIC observables with p outcomes. This rules
out the existence of minimal covariant PIC observables
in dimension 7.
There are other cases, in addition to d = 7, which

do not admit minimal covariant PIC observables for the
same reason. The dimensions whose minimal PIC ob-
servables are known to have a prime number of outcomes
(and which consequently do not have minimal covariant
PIC observables) are listed in Table III up to d ≤ 1000.
This list is calculated using the results from [1].

Proposition 7. Let G be a group, H ⊂ G a proper sub-
group and U a projective unitary representation of G in
H. Suppose #(G/H) is prime. If M : G/H → L(H) is a
U -covariant observable, it is not PIC.
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The proof is a consequence of the following lemma.
Let us first notice that any subgroup G0 ⊆ G acts on the
quotient space G/H in the natural way; x·(gH) = (xg)H
for all x ∈ G0 and g ∈ G. But this action need not be
transitive.

Lemma 1. Suppose G is a group and H ⊆ G a sub-
group such that #(G/H) is prime. There exists a cyclic
subgroup G0 ⊂ G such that the action of G0 on G/H is
transitive.

Proof. We recall that, if p denotes a prime number, a
p-Sylow subgroup Gp ⊆ G is a subgroup whose order is
pq for some integer q ≥ 1, and pq is the highest power
dividing the order of G. For any prime p dividing the
order of G, there exists a p-Sylow subgroup Gp of G (see
e.g. [11, Theorem 6.1 of Chapter 1] or [12, Theorem 1.7]).
Denote p = #(G/H), and let #G = pqm, with p not

dividing m. Fix a p-Sylow subgroup Gp ⊆ G. Then,
Gp * H , as otherwise

#G = #(G/H) ·#(H/Gp) ·#Gp = pq+1 ·#(H/Gp)

and this contradicts the assumption that #G = pqm,
with p not dividing m. Thus, we can pick g0 ∈ Gp such
that g0 /∈ H , and we denote by G0 the cyclic subgroup
generated by g0. Since G0 is a subgroup of Gp, we must
have #G0 = pr for some 1 ≤ r ≤ q. On the other hand,
G0 6= G0 ∩H since g0 /∈ H . It follows that #(G0/(G0 ∩
H)) = ps, with s ≥ 1.
We define a map Λ : G0/(G0 ∩H) → G/H by

Λ(g(G0 ∩H)) = gH ∀g ∈ G0 .

This map is well defined and is an injection, since, for
all g, g′ ∈ G0, g−1g′ ∈ H if and only if g−1g′ ∈
H ∩ G0. Therefore, #(G0/(G0 ∩H)) ≤ #(G/H). Since
#(G/H) = p and #(G0/(G0 ∩H)) = ps with s ≥ 1, we
conclude that #(G0/(G0 ∩H)) = p. It follows that Λ is
a bijection. It is easy to verify that for g, g′ ∈ G0, we
have

g′ · Λ(g(G0 ∩H)) = g′gG/H .

Since G0 acts transitively on G0/(G0 ∩ H) and Λ is a
bijection, we see that this formula defines a transitive
action of G0 on G/H .

Proof of Proposition 7. Let M : G/H → L(H) be a U -
covariant observable. Choose a cyclic subgroup G0 ⊂ G
as in Lemma 1 and let U ′ be the restriction of U to G0.
Then, M is a U ′-covariant observable and not PIC by
Proposition 5.

We remark that in Lemma 1 the condition that
#(G/H) is prime is essential. Indeed, if e.g. G = Q and
H = {1 , −1}, then #(Q/H) = 4, but there is no cyclic
subgroup G0 ⊆ Q whose action on Q/H is transitive.
Indeed, by direct inspection, one can check that every
cyclic subgroup G0 ⊆ Q has order 2 or 4 and contains H ,
so #(G0/(G0 ∩H)) = 1 or 2 6= 4.

VI. CONCLUSIONS

The minimal number of outcomes for a pure-state in-
formationally complete (PIC) observable has been re-
cently solved in [1]. One would hope that it is possible to
find a minimal PIC observable with some simple mathe-
matical structure, possibly in some symmetric form. An
obvious try is to use covariance with respect to some finite
group since this works so nicely in the case of minimal
informationally complete observables. It would provide
a simple and easy way to construct minimal observables
with the desired property.
We have seen that the approach of using covariant

observables fails in general; for some dimensions there
are no minimal PIC observables that would be covari-
ant under any finite group. We conclude that this kind
of symmetry is lacking in the duality of observables and
pure states, although it exists between observables and
all states.
One can turn into a more general question: Is it possi-

ble to have a minimal PIC observable M with all opera-
tors having the same set of eigenvalues? For such M any
pair of operatorsM(x) andM(x′) are unitarily equivalent.
Hence, M bears some symmetry although it need not be
covariant under any projective unitary representation.
A particularly appealing observable of this type would

consists of rank-1 operators. It has been shown in [13]
that in every finite dimension d, there exists an observ-
able consisting of 2d operators with rank-1 and identify-
ing all pure states up to a measure zero. This, however,
does not answer to the question of rank-1 PIC observ-
ables, which are required to identify all states and there-
fore must have at least 4d− 4− δ(d) outcomes [1].
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[2] E. Prugovečki. Information-theoretical aspects of quan-

tum measurements. Int. J. Theor. Phys., 16:321–331,
1977.

[3] C.M. Caves, C.A. Fuchs, and R. Schack. Unknown quan-
tum states: the quantum de Finetti representation. J.

Math. Phys., 43:4537–4559, 2002.
[4] G.M. D’Ariano, P. Perinotti, and M.F. Sacchi. Informa-

tionally complete measurements and group representa-
tion. J. Opt. B: Quantum Semiclass. Opt., 6:S487–S491,
2004.

[5] T. Heinosaari, C. Carmeli, A. Toigo Informationally
complete joint measurements on finite quantum systems.
Phys. Rev. A, 85:012109, 2012.

[6] P. Busch. Informationally complete sets of physical quan-
tities. Internat. J. Theoret. Phys., 30(9):1217–1227, 1991.

[7] I. Martin Isaacs. Character theory of finite groups. AMS

Chelsea Publishing, Providence, RI, 2006. Corrected
reprint of the 1976 original [Academic Press, New York;
MR0460423].

[8] A.S. Holevo. Statistical Structure of Quantum Theory.
Springer-Verlag, Berlin, 2001.

[9] Frederick Greenleaf and Martin Moskowitz. Cyclic vec-
tors for representations of locally compact groups. Math-

ematische Annalen, 190:265–288, 1971.
[10] Jean-Pierre Serre. Représentations linéaires des groupes
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