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I. INTRODUCTION

One of the peculiar features that one encounters when
entering the realm of quantum physics is the impossibil-
ity of measuring certain observables jointly with a single
measurement setup. This incompatibility of observables
has various manifestations, captured for instance in the
concept of complementarity [7] or the uncertainty prin-
ciple [5]. However, the formulation of these features is
not restricted to quantum theory and can be carried out
also in a more general framework [3]. This opens up the
possibility of exploring which, if any, of these features are
characteristic of quantum theory.

In a recent Letter [6] a new way of comparing the in-
compatibility of pairs of observables using the concept
of joint measurability region was introduced. The joint
measurability region of a pair of observables describes
the amount of noise that needs to be added in order to
make the observables jointly measurable. This concept
is well-defined in any probabilistic theory, thus allowing
the comparison even between pairs of observables in dif-
ferent theories. In particular, we can define a maximally
incompatible pair of observables to be a pair whose joint
measurability region is as small as it can be in any prob-
abilistic theory.

It was demonstrated in [6] that quantum theory does
contain maximally incompatible observables, although
the provided example was based on a rather artificial
construction. The purpose of this Letter is to comple-
ment the earlier work [6] by shedding more light onto
the maximally incompatible observables in quantum the-
ory. Firstly, we show that the infinite dimensionality of
the Hilbert space is a necessary condition for maximal
incompatibility. Secondly, we present physically relevant
examples of maximal incompatibility by proving that the
canonically conjugated position and momentum observ-
ables, as well as the number and phase observables, con-
stitute maximally incompatible pairs.

II. JOINT MEASURABILITY DEGREE

An observable M in quantum theory is generally de-
scribed by a normalized positive operator valued measure
(POVM) [12]. For the purpose of our investigation, it is
sufficient to consider observables whose outcome space Ω
is either Rn or some subset of Rn.

Two observables M1 and M2 with outcome spaces Ω1

and Ω2, respectively, are jointly measurable if there exists
a third observable M with the product outcome space
Ω1×Ω2 such that M1 and M2 are the margins of M, i.e.,

M(X × Ω2) = M1(X) , M(Ω1 × Y ) = M2(Y )

for all Borel sets X ⊆ Ω1 and Y ⊆ Ω2.
We say that an observable T is trivial if T(X) = µ(X)1

for some probability measure µ. Hence the obtained mea-
surement outcome does not depend on the input state at
all. The fact that a trivial observable is jointly measur-
able with any other observable serves as a motivation for
the following definition [6]: For any two observables M1

and M2, the joint measurability region J(M1,M2) is the
set of all points (λ, µ) ∈ [0, 1]× [0, 1] for which there exist
trivial observables T1 and T2 such that λM1 + (1− λ)T1

and µM2+(1−µ)T2 are jointly measurable. It was shown
in [6] that the triangle shaped set

4 ≡ {(λ, µ) ∈ [0, 1]× [0, 1]|λ+ µ ≤ 1}

is always contained in J(M1,M2). This inclusion sim-
ply means that once the added noise exceeds a certain
bound, then all pairs of observables become jointly mea-
surable. Hence, it is natural to say that two observ-
ables M1 and M2 are maximally incompatible if their joint
measurability region is precisely this minimal set 4, i.e.,
J(M1,M2) = 4.

For two observables M1 and M2, we denote by
j(M1,M2) the greatest number 0 ≤ λ ≤ 1 such that
(λ, λ) ∈ J(M1,M2), and we call it the joint measura-
bility degree of M1 and M2 (see Fig. 1). The joint mea-
surability degree can be seen as another expression of
the incompatibility of two observables, coarser than the
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FIG. 1: (Color online) The region 4 (dark) is always a sub-
set of the joint measurability region (colored) of two observ-
ables, and is equal to it for maximally incompatible observ-
ables. The joint measurability degree is graphically obtained
as the λ-coordinate of the intersection (dot) of the boundary
of the joint measurability region and the symmetry line λ = µ
(dashed blue line).

joint measurability region [18]. (Related concepts have
been used also in [1, 11].) Note that 1

2 ≤ j(M1,M2) ≤ 1
since 4 ⊆ J(M1,M2) ⊆ [0, 1] × [0, 1], and the convex-
ity of J(M1,M2) implies that M1 and M2 are maximally
incompatible if and only if j(M1,M2) = 1

2 .
In a finite d-dimensional Hilbert space Hd a natural

candidate for a maximally incompatible pair is the canon-
ically conjugated pair corresponding to two mutually un-
biased bases that are connected via finite Fourier trans-
form [16]. Fix an orthonormal basis {ϕj}d−1j=0 of Hd and
define

ψk =
1√
d

d−1∑
j=0

e2πijk/dϕj . (1)

It is immediate to check that {ϕj}d−1j=0 and {ψk}d−1k=0

are mutually unbiased, i.e, |〈ϕj |ψk 〉| = 1/
√
d for all

j, k. The corresponding observables A(j) = |ϕj〉〈ϕj | and
B(k) = |ψk〉〈ψk| are thus complementary in the sense
that if tr [%A(j)] = 1 for some state %, then tr [%B(k)] =
1/d, and vice versa. However, it has been proved in [10]
that

j(A,B) =
2 +
√
d

2(1 +
√
d)
, (2)

so that A and B are not maximally incompatible. Nev-
ertheless, this does not rule out the existence of a max-
imally incompatible pair of observables for finite dimen-
sional systems.

III. BOUNDS FOR THE JOINT
MEASURABILITY DEGREE OF FINITE

DIMENSIONAL OBSERVABLES

If perfect cloning of quantum states would be possible,
then obviously all observables would be jointly measur-
able. Even if this is not the case, we may try to use an

FIG. 2: (Color online) A quantum cloning device (QCD) can be
employed for performing an approximate joint measurement
of an arbitrary pair of observables by making two approximate
clones of the initial state and then performing measurements
separately on these clones.

imperfect but realizable cloning device as a way of per-
forming approximate joint measurements. The method
is very simple; we make two approximate clones %̃ of the
initial state %. Then we perform measurements of M1

and M2 separately on these two approximate clones; see
Fig. 2. The resulting total measurement is not a joint
measurement of M1 and M2, but of their noisy versions.
The additional noise clearly depends on the performance
of the quantum cloning device.

We consider the cloning device C of the form [15]

C(%) =
2

d+ 1
S(%⊗ 1)S ,

where S is the projection from Hd⊗Hd to the symmetric
subspace of Hd ⊗ Hd. The state %̃ of each approximate
clone is obtained as the corresponding partial trace of
C(%) and we get

%̃ = c(d)%+ (1− c(d))
1

d
,

where the number c(d) depends only on the dimension d
and is given by

c(d) =
2 + d

2(1 + d)
.

For any two observables M1 and M2 we can now define
an observable M by the formula

tr [%M(X × Y )] = tr [C(%)M1(X)⊗M2(Y )] ,

required to hold for all states % and all outcome sets X
and Y . By evaluating tr [%M(X × Ω2)] = tr [%̃M1(X)] we
obtain the first margin of the observable M as

M(X × Ω2) = c(d)M1(X) + (1− c(d))T1(X)

where the trivial observable T1 is given by T1(X) =
tr [M1(X)/d]1. Similarly,

M(Ω1 × Y ) = c(d)M2(Y ) + (1− c(d))T2(Y )

with T2(Y ) = tr [M2(Y )/d]1. We have thus proved the
following result.
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FIG. 3: (Color online) The joint measurability degree of
two canonically conjugated observables (upper curve) and the
lower bound obtained by employing a quantum cloning device
(lower curve) as functions of the Hilbert space dimension d.
Both of these sequences approach to 1

2
when d goes to infinity,

but they are always separated. The smallest joint measura-
bility degree for two observables in dimension d is somewhere
between these curves.

Theorem 1. Let Hd be a d-dimensional Hilbert space
with 2 ≤ d <∞. For any two observables M1 and M2 on
Hd we have

1

2
<

2 + d

2(1 + d)
≤ j(M1,M2) . (3)

In particular, there are no maximally incompatible ob-
servables in a finite dimensional Hilbert space.

It is interesting to note that this kind of a restriction
is not a common feature of general probabilistic theories.
It was shown in [6] that there exist theories for which a
maximally incompatible pair of observables exists even
for the simplest finite system.

Even though Theorem 1 gives us a lower bound for the
joint measurability degree, it does not tell us whether or
not it can actually be reached by any pair of observables.
Comparison of Eq. (2) and Eq. (3) immediately implies
(see Fig. 3) that this is not the case for the canonically
conjugated pair of observables. That is, the smallest pos-
sible joint measurability degree in a fixed dimension re-
mains an open question.

IV. MAXIMAL INCOMPATIBILITY OF
POSITION AND MOMENTUM

Our first example of a pair of maximally incompatible
quantum observables is given by the position and momen-
tum of a particle moving in a single spacial dimension.
Consider the Hilbert space H = L2(R) and the canonical

position and momentum observables Q and P:

〈ψ |Q(X)ψ 〉 =

∫
X

|ψ(x)|2 dx,

〈ψ |P(Y )ψ 〉 =

∫
Y

∣∣∣ψ̂(y)
∣∣∣2 dy ,

where ψ̂ is the Fourier transform of ψ. Similar to the
finite dimensional canonical pair A and B, also position
and momentum are (probabilistically) complementary in
the sense that for any bounded intervals X,Y ⊂ R and
any state %, tr [%Q(X)] = 1 implies 0 < tr [%P(Y )] < 1
and vice versa. It follows that any positive operator A
satisfying A ≤ Q(X) and A ≤ P(Y ) is necessarily zero
[4, Sec. IV.2.3, IV.2.4]. Using complementarity and the
specific structure of Q and P, we can prove the following
result.

Theorem 2. The position and momentum observables
are maximally incompatible.

Before going into the details of the proof of this result,
we will explain the used main tool. The starting point
is the fact that position and momentum share specific
symmetry properties with respect to phase space trans-
lations as represented by the Weyl operators W (q, p) =

ei
qp
2 e−iqP eipQ where Q and P are the selfadjoint position

and momentum operators:

W (q, p)Q(X)W (q, p)∗ = Q(X + q), (4)

W (q, p)P(Y )W (q, p)∗ = P(Y + p). (5)

If one wishes to add noise to Q and P while keeping these
symmetry properties, then instead of mixing with triv-
ial observables one should convolve them with probability
measures [8]. These smeared position and momentum ob-
servables are jointly measurable if and only if they have
a joint observable M which is covariant with respect to
phase space translations [9], i.e., W (q, p)M(Z)W (q, p)∗ =
M(Z + (q, p)). The proof of this result is based on av-
eraging the joint observable with respect to phase space
translations. However, since R2 is not compact one needs
to be careful how to perform this averaging. Indeed, one
should do this using an invariant mean [19], which is also
the main tool in our proof of Theorem 2.

An invariant mean on B(Rn), the space of bounded
complex valued functions on Rn, is a positive linear func-
tional m : B(Rn) → C which is normalized to m(1) = 1
and which is invariant with respect to translations (for
the existence of invariant means, see [13, Thm. 17.5]).
More explicitly, if fx denotes the translate of f , i.e.,
fx(y) = f(y + x), then m(fx) = m(f).

Any observable M on R2 can be averaged by the follow-
ing procedure: For any state % and any f ∈ Cb(R2), the
space of bounded continuous functions on R2, we define
the bounded function Θ[f ; %] by

Θ[f ; %](q, p) = tr
[
%W (q, p)M[f (q,p)]W (q, p)∗

]
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where M[f ] =
∫
f dM. Now let m be an invariant mean

on B(R2). Then by the duality T (H)
∗ ' L(H) between

the trace class and the bounded operators, the formula

tr [%Mav(f)] = m(Θ[f ; %]) (6)

defines a positive linear map Mav : Cb(R2) → L(H)
which is normalized to Mav(1) = 1. By the ana-
logue of the Riesz-Markov theorem for operator mea-
sures [2, Thm. 19], the restriction of this map to the
subspace Cc(R2) ⊂ Cb(R2) of compactly supported func-
tions corresponds to a unique POVM M0 on R2 via
Mav(f) = M0[f ] for all f ∈ Cc(R2). Note that M0

is phase space translation covariant since Mav(f (q,p)) =
W (q, p)∗Mav(f)W (q, p). However, the equality Mav(f) =
M0[f ] need not hold for all f ∈ Cb(R2), although in gen-
eral one has M0[f ] ≤ Mav(f) for all positive f ∈ Cb(R2).
Indeed, for such functions,

M0[f ] = sup{M0[gf ]|g ∈ Cc(R2), 0 ≤ g ≤ 1}
= sup{Mav(gf)|g ∈ Cc(R2), 0 ≤ g ≤ 1}
≤ Mav(f).

Thus, M0 need not be normalized to M0(R2) = 1, al-
though we always have M0(R2) ≤ 1.

The weight at infinity of the map Mav is defined as

Mav(∞) = 1− sup{Mav(f)|f ∈ Cc(R2), 0 ≤ f ≤ 1}
= 1−M0(R2).

Hence, the averaged covariant POVM M0 is normalized,
and thus an observable, if and only if Mav(∞) = 0. How-
ever, in our proof of Theorem 2 the averaging does not
lead to a normalized POVM, but instead the constructed
map will have full weight at infinity, i.e., Mav(∞) = 1.
This just means that M0(X) = 0 for all X, or that the
“measure part” of Mav is zero. Let us now turn to the
proof of Theorem 2.

Proof. Fix 0 < λ ≤ j(Q,P) and let M be a joint observable
for the corresponding noisy versions of Q and P, i.e.,

M(X × R) = λQ(X) + (1− λ)µ1(X)1 ,

M(R× Y ) = λP(Y ) + (1− λ)µ2(Y )1,

where µ1 and µ2 are some probability measures. Let
Mav : Cb(R2) → L(H) be the averaged map constructed
from M as explained earlier. The margins of Mav are de-
fined in the obvious manner: For any f ∈ Cb(R) the func-
tions f1(q, p) = f(q) and f2(q, p) = f(p) are in Cb(R2),
and we set Mav

i (f) = Mav(fi). Similarly, we can de-
fine the margins mi(f) = m(fi) of the invariant mean
m, which themselves turn out to be invariant means on
B(R). Now, e.g., we have M[f1] = λQ[f ] + (1−λ)µ1[f ]1,
so that, for any state %,

Θ[f1; %](q, p) = λtr [%W (q, p)Q[fq]W (q, p)∗]

+ (1− λ)µ1[fq] = λtr [%Q[f ]] + (1− λ)µ1[fq]

by Eq. (4). Denoting (f ∗ µ−1 )(q) = µ1[fq], Eq. (6) then
yields

Mav
1 (f) = λQ[f ] + (1− λ)m1(f ∗ µ−1 )1.

If f ∈ Cc(R), then f ∗ µ−1 is a continuous function
vanishing at infinity and hence m(f ∗µ−1 ) = 0 [13, 17.20].
Hence, we have Mav

1 (f) = λQ[f ] for all f ∈ Cc(R), and
by similar reasoning Mav

2 (f) = λP[f ] for all f ∈ Cc(R).
In other words, the unique POVMs corresponding to the
margins of Mav are scalar multiples of the position and
momentum observables.

Now let us consider the margins of M0. For any f ∈
Cc(R) we have M0[fi] ≤ Mav(fi) = Mav

i (f) from which
it follows that M0(X × R) ≤ λQ(X) and M0(R × Y ) ≤
λP(Y ). In particular, M0(X ×Y ) ≤ λQ(X) and M0(X ×
Y ) ≤ λP(Y ). The complementarity of Q and P then
implies, in particular, that M0(X×Y ) = 0 for all compact
sets X and Y . Since R2 is σ-compact, we have M0(R2) =
0 and thus Mav(∞) = 1.

Consider next the weight at infinity of the margins.
Since mi(f ∗ µ−i ) = 0 for all f ∈ Cc(R), we have

Mav
1 (∞) = 1− sup{λQ[f ]|f ∈ Cc(R), 0 ≤ f ≤ 1}

= (1− λ)1,

and similarly Mav
2 (∞) = (1−λ)1. However, we also have

Mav(∞) ≤ Mav
1 (∞) + Mav

2 (∞)

(see the proof of [19, Lemma 2]) so that

1 ≤ (1− λ)1 + (1− λ)1

from which it follows that λ ≤ 1/2. Since this is true for
all λ ≤ j(Q,P), we conclude that j(Q,P) = 1/2. There-
fore, Q and P are maximally incompatible.

V. MAXIMAL INCOMPATIBILITY OF
NUMBER AND PHASE

As a second example we consider another pair of ob-
servables which is usually given the status of a com-
plementary pair, namely, the quantum optical photon
number and phase observables. Let H be the Hilbert
space spanned by the orthonormal basis {|n〉 | n ∈
N0 = {0, 1, 2, . . .}} consisting of the number states
and let N({n}) = |n〉〈n| denote the number observ-
able, i.e., the spectral measure of the number operator
N =

∑∞
n=0 n|n〉〈n|. The canonical phase observable [14]

is then defined as

Φ(X) =

∞∑
m,n=0

1

2π

∫
X

ei(m−n)θ dθ |m〉〈n|

for all Borel sets X ⊆ [0, 2π). In particular, Φ transforms
covariantly under the phase shifts generated by the num-
ber operator, i.e., eiθNΦ(X)e−iθN = Φ(X + θ) where we
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regard [0, 2π) as a group with addition modulo 2π. The
number observable, on the other hand, is obviously phase
shift invariant.

The complementarity of N and Φ can be expressed by
looking at their eigenstates and approximate eigenstates,
respectively. First, for a number state |n〉 the number dis-
tribution is peaked, but the phase distribution is uniform.
Second, for coherent states |z〉 the canonical phase dis-
tribution approaches the delta distribution concentrated
at arg(z) as |z| → ∞ [17], while the number distributions

get increasingly uniform, i.e., |〈 z |n 〉|2 → 0 as |z| → ∞.
Using the complementarity and the specific structure of
N and Φ, we can prove the following result.

Theorem 3. The number and phase observables are
maximally incompatible.

The core of the method for proving Theorem 3 is the
same as for position and momentum, although some care
needs to be paid to certain mathematical details. Again,
before going into the details of the proof of this result,
we will explain some general facts.

First of all, since the value space N0 of the number
observable N is not a group but merely a semigroup, it
is convenient to consider instead the extension Next on
Z obtained by setting Next({n}) = 0 for n < 0. The
important observation now is that j(Φ,N) ≤ j(Φ,Next).
Indeed, if some noisy versions of Φ and N with a given
λ are jointly measurable, then by trivially extending the
joint observable M into an observable Mext on [0, 2π)×Z
we obtain a joint observable of noisy versions of Φ and
Next with the same λ.

Second, since [0, 2π) is a compact group, the averaging
with respect to phase shifts can be done directly without
using an invariant mean. Indeed, suppose that M is a
joint observable for noisy versions of number and phase,
i.e.,

M(X × Z) = λΦ(X) + (1− λ)µ1(X)1, (7)

M([0, 2π)× Y ) = λNext(Y ) + (1− λ)µ2(Y )1. (8)

Then, by defining

M′(X × Y ) =
1

2π

∫
e−iθNM((X + θ)× Y )eiθN dθ

we get an observable which satisfies M′((X + θ) × Y ) =
eiθNM′(X×Y )e−iθN , i.e., it is phase shift covariant. The
margins of M′ differ from those of M only by the fact that
the probability measure µ1 is replaced by the uniform
distribution u on [0, 2π). Therefore, without loss of gen-
erality we can always assume that the joint observable, if
it exists, is phase shift covariant and hence the noise in
the first margin is uniform.

One final difference when compared to the position-
momentum case arises when we consider the generation
of number shifts. Indeed, since Φ is not a spectral mea-
sure, we do not directly get a unitary representation as
a suitable candidate for this. However, we can define for

any k ∈ N0 the operator

V (k) =

∫
eikθ Φ(dθ) =

∞∑
n=0

|n〉〈n+ k|,

so that the map V : N0 → L(H) is a (nonunitary) repre-
sentation of the semigroup N0, which satisfies the com-
mutation relation eiθNV (k) = e−ikθV (k)eiθN . It is asso-
ciated to number shifts as can be seen from the covariance
condition V (k)Next(Y )V (k)∗ = Next(Y − k) Note that
this representation leaves the phase distribution invari-
ant, i.e., V (k)Φ(X)V (k)∗ = Φ(X). With this machinery,
we are now ready to prove Theorem 3.

Proof. Fix 0 < λ ≤ j(Φ,Next) and let M be a phase shift
covariant joint observable of noisy versions of Φ and Next

so that the margins of M are given by Eqs. (7) and (8)
with the uniform noise in the first margin, i.e., µ1 = u.
Now for any f ∈ Cb([0, 2π)× Z) and k ∈ N0 we set

Θ[f ; %](k) = tr
[
%V (k)M[f (0,−k)]V (k)∗

]
so that Θ[f ; %] ∈ B(N0). Hence, by defining

tr [%Mav(f)] = m(Θ[f ; %])

where m is a semigroup invariant mean on B(N0) with
the property that m(f) = limn→+∞ f(n) whenever this
limit exists [13, Thm. 17.5 and 17.20], we obtain a
positive linear map Mav : Cb([0, 2π) × Z) → L(H)
which satisfies the covariance condition Mav(f (θ,k)) =
e−iθNV (k)Mav(f)V (k)∗eiθN .

Using the number shift invariance of the noisy phase
observable, we see that Mav

1 (f) = λΦ[f ] + (1 − λ)u[f ]1
so that Mav

1 (∞) = 0, and the same argument as in the
proof of Theorem 2 shows that Mav

2 (f) = λNext[f ] for all
f ∈ Cc(Z). In particular, if M0 again denotes the POVM
on [0, 2π)× Z corresponding to the restriction of Mav to
Cc([0, 2π)× Z), then

M0(X × {n}) ≤ M0([0, 2π)× {n}) = Mav(χ[0,2π)×{n})

= Mav
2 (χ{n}) = λNext({n}) , (9)

where χE denotes the indicator function of a set E. Note
that in the first and third equality we have used the facts
that χ[0,2π)×{n} ∈ Cc([0, 2π) × Z) and χ{n} ∈ Cc(Z),
respectively. In particular, M0(X×{n}) = 0 for all n < 0
and for n ≥ 0 we have M0(X×{n}) ≤ λ|n〉〈n|. It follows
that there exists a number 0 ≤ ω(X,n) ≤ 1 such that

M0(X × {n}) = ω(X,n)λNext({n}). (10)

Note that ω(X,n) = 0 for all n < 0 but for n ≥ 0 the map
ω(·, n) is actually a positive measure. By the covariance
of Mav we have

e−iθNV (k)M0(X×Y )V (k)∗eiθN = M0((X−θ)×(Y −k))

so that by applying this to Eq. (10) we get

ω(X,n)λ|n− k〉〈n− k| = ω(X − θ, n− k)λ|n− k〉〈n− k|
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for all n ≥ k ≥ 0. Hence, we have ω(X − θ, n − k) =
ω(X,n) so by uniqueness of the Haar measure on [0, 2π)
there exists a positive constant c, independent of n, such
that ω(X,n) = c u(X) for all n ≥ 0. Eq. (10) then gives
us M0([0, 2π) × Z) = cλ1. On the other hand, we know
by Eq. (9) that M0([0, 2π) × {n}) = λNext({n}) so that
M0([0, 2π)×Z) = λ1. By comparison, we have c = 1 and
thus

M0(X × {n}) = λu(X)Next({n}).

Therefore, for any f ∈ Cb([0, 2π)) we have M0[f1] =
λu[f ] and the inequality M0[f1] ≤ Mav

1 (f) = λΦ[f ]+(1−
λ)u[f ]1 implies that

λΦ(X) + (1− 2λ)u(X)1 ≥ 0

for all Borel sets X ⊆ [0, 2π). Since for coherent states
|z〉 the canonical phase distribution approaches the delta
distribution concentrated at arg(z) as |z| → ∞, by set-
ting arg(z) = 0 and X = [π/2, π] we obtain

0 ≤ lim
|z|→∞

(λ〈z|Φ(X)|z〉+ (1− 2λ)u(X)) = (1− 2λ)
1

4
.

This means that λ ≤ 1
2 , so that j(Φ,Next) = 1

2 and thus

also j(Φ,N) = 1
2 .

VI. SUMMARY AND OUTLOOK

The concepts of joint measurability region and joint
measurability degree are ways of quantifying the incom-
patibility of two observables in any probabilistic theory.
One can even go a step further and take the joint mea-
surability region or degree of the most incompatible pair
of observables in a given theory to describe the degree of
incompatibility inherent in the theory [6]. Therefore, in
order to gain a better understanding of the incompati-
bility inherent in quantum theory as compared to other
probabilistic theories, we need to have better knowledge
of maximally incompatible quantum observables.

Using a quantum cloning device as a means of perform-
ing approximate joint measurements, we have derived a
dimension dependent lower bound for the smallest pos-
sible joint measurability degree in a finite dimensional
Hilbert space. For any finite dimension this bound is
strictly greater than the joint measurability degree of
a maximally incompatible pair, and therefore our result
shows that in quantum theory maximal incompatibility
requires an infinite dimensional Hilbert space. What still
remains an open question is whether or not in a fixed
finite dimension the corresponding bound can actually
be reached by some pair of observables. Indeed, one
might expect that two canonically conjugated observ-
ables would be as incompatible as any two observables
can be, but as we have demonstrated, their joint mea-
surability degree never coincides with the derived lower
bound. Therefore we only know that the joint measur-
ability degree of the most incompatible pair lies some-
where between these two values.

In the case of an infinite dimensional Hilbert space we
have shown that two of the most common pairs of com-
plementary observables (position and momentum; num-
ber and phase) constitute maximally incompatible pairs.
In both cases the complementarity is explicitly used in
the proof, and therefore it is natural to ask if there is
in general some connection between maximal incompat-
ibility and other formulations of the incompatibility of
observables. We leave this as a possible topic for future
investigations.
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