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The principle of local distinguishability states that an arbitrary physical state of a bipartite system
can be determined by the combined statistics of local measurements performed on the subsystems.
A necessary and sufficient requirement for the local measurements is that each one must be able
to distinguish between all pairs of states of the respective subsystems. We show that if the task is
changed into the determination of an arbitrary bipartite pure state, then at least in certain cases it is
possible to restrict to local measurements which can distintinguish all pure states but not all states.
Moreover, we show that if the local measurements are such that the purity of the bipartite state
can be verified from the statistics without any prior assumption, then in these special cases also this
property is carried over to the composite measurement. These surprising facts give evidence that
the principle of local distinguishability may be expanded beyond its usual applicability.

PACS numbers: 03.65.Ta, 03.65.Wj

I. INTRODUCTION

Quantum theory is an example of a physical theory
which satisfies the principle of local distinguishability.
This means that if two states of a composite system are
different, then they can be distinguished using the com-
bined statistics of some appropriate local measurements
on the component systems. This feature of quantum the-
ory has both practical and foundational relevance. From
the practical point of view, local measurements are obvi-
ously easier to implement than global measurements. On
the foundational side, local distinguishability has been
considered such an important feature that it has been
taken as an axiom in several derivations of quantum the-
ory [1–3].

The principle of local distinguishability is a statement
concerning arbitrary states of composite physical sys-
tems. However, it is completely reasonable to ask if the
same principle holds when only pure states are consid-
ered, and this is precisely the focus of this paper. To
be more explicit, suppose that Alice and Bob both per-
form local measurements that are capable of identifying
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an unknown pure state among all pure states on their
respective components; see Fig. 1. Are they then able,
using the combined statistics of those measurements, to
identify an unknown pure state among all pure states of
the composite system?

Since pure states represent the states of maximal infor-
mation for a system, this variation of the principle of local
distinguishability is of foundational interest. The main
practical motivation comes from the fact that prior infor-
mation, in this case the purity of the unknown state, can
be exploited to drastically reduce the amount of resources
needed for state tomography [4–6]. Specifically, for pure
state determination the minimum number of measure-
ment outcomes needed to succeed in the task reduces
from a quadratic (in the dimension of the system) to a
linear expression. The validity of this expanded principle
of local distinguishability would therefore imply that the
experimenter could take advantage of not only the sim-
pler setup coming from the locality of the measurements,
but also the sufficiency of the restricted resources.

In this paper we show that Alice and Bob can succeed
in their task of pure state determination at least in two
cases: (i) if at least one party, Alice or Bob, can distin-
guish between all states of their respective subsystem, or
(ii) if at least one of the subsystems is either a qubit or
a qutrit. We then show that if Alice and Bob possess
measurements which are in addition capable of verifying
the purity of their systems from the statistics, then in
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FIG. 1. (Color online) For a bipartite quantum system, any
local measurements A and B performed on the subsystems can
be combined to yield a measurement A⊗B on the composite
system. The question then is if A⊗B can distinguish between
all bipartite pure states whenever A and B can distinguish
between all pure states of the respective subsystems.

the above cases the composite measurement also has this
property. Finally, we generalize case (ii) to multipartite
systems consisting of qubits and qutrits, and use this to
obtain a special class of measurements on higher dimen-
sional systems, for which the expanded principle of local
distinguishability is valid.

II. PURE STATE INFORMATIONAL
COMPLETENESS

Recall that a measurement is called informationally
complete if any two different states can be distinguished
from the outcome statistics [7]. Mathematically such a
measurement is described by a positive operator valued
measure (POVM) A such that the elements A(x) span
the real vector space Ls(H) of selfadjoint operators on
the Hilbert space H of the system [8, 9]. (We always
assume dimH < ∞.) This is equivalent to the require-
ment that the expectation value of any observable O can
be written as a linear combination of the probabilities
%A(x) = tr [%A(x)],

〈O〉 =
∑
x

αx%
A(x) . (1)

As a variation of informational completeness, we say
that a measurement is pure state informationally com-
plete if any two different pure states give different mea-
surement outcome statistics [10]. In order to formulate a
mathematical criterion for this property, we first define
R(A) to be the real linear span of the operators A(x)
of a POVM A, i.e., R(A) = {

∑
x rxA(x) : rx ∈ R}. In

physical terms, R(A) is the set of those observables for
which we can calculate the expectation value in the form
(1). As said before, R(A) = Ls(H) if and only if A is
informationally complete.

We denote by R(A)⊥ ⊂ Ls(H) the orthogonal comple-
ment of R(A) with respect to the Hilbert-Schmidt inner
product 〈S | T 〉 = tr [ST ]. It is easy to verify that two
states %1 and %2 are indistinguishable by a measurement

of A if and only if %1 − %2 ∈ R(A)⊥. Therefore, the
pure state informational completeness of A is equivalent
to the condition that R(A)⊥ does not contain any matrix
of rank 2 [4]. Indeed, since R(A) contains the identity 1,
the elements of R(A)⊥ are traceless and therefore the ex-
istence of such a matrix would yield two indistinguishable
pure states via its spectral decomposition.

The two properties of informational completeness and
pure state informational completeness are inequivalent
for all systems whose Hilbert space is at least three di-
mensional [4]. For instance, an informationally complete
measurement for a qutrit system requires at least 9 out-
comes, but a pure state informationally complete mea-
surement can have minimally 8 outcomes (for a concrete
example, see [12]). The fact that the two concepts are
equivalent for qubit systems follows easily from the previ-
ously mentioned rank condition: any element ofR(A)⊥ is
a selfadjoint and traceless 2× 2 matrix, hence it is either
zero or has rank 2; therefore, A is pure state information-
ally complete if and only if R(A)⊥ = {0}, that is, A is
informationally complete.

III. EXPANDING LOCAL
DISTINGUISHABILITY

Let us turn to a setting where the unknown state is a
joint state of a composite system, and two local measure-
ments are performed on its subsystems; see Fig. 1. Alice
and Bob thus measure some POVMs A and B acting on
the Hilbert spaces HA and HB of the subsystems, respec-
tively. The composite measurement is then described by
the tensor product POVM (A ⊗ B)(x, y) = A(x) ⊗ B(y)
acting on HA ⊗ HB . Our main question can be formu-
lated as follows:

If A and B are pure state informationally
complete, does it follow that also A⊗B is pure
state informationally complete?

We first note that the converse is true: if the composite
measurement A ⊗ B is pure state informationally com-
plete, then so are both of the components. Indeed, if it
were the case that, say, A could not distinguish some pair
of distinct pure states %1 and %2, then any pure state σ of
Bob’s component would yield distinct pure states %1 ⊗ σ
and %2 ⊗ σ which would be indistinguishable by A⊗ B.

In order to get a grasp of the problem at hand, we
need to understand the structure of the complement
space R(A ⊗ B)⊥. First note that since R(A ⊗ B) =
R(A) ⊗ R(B), each of the three orthogonal subspaces
R(A)⊥ ⊗ R(B), R(A) ⊗ R(B)⊥, and R(A)⊥ ⊗ R(B)⊥ is
contained in R(A⊗B)⊥, and hence so is their direct sum.
By dimension counting it can be verified that this direct
sum is actually equal to the complement space. Further-
more, since Ls (HA) = R(A) ⊕ R(A)⊥ and similarly for
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Ls (HB), we have the following expressions:

R(A⊗ B)⊥ = (Ls (HA)⊗R(B)⊥)⊕ (R(A)⊥ ⊗R(B))

= (R(A)⊥ ⊗ Ls (HB))⊕ (R(A)⊗R(B)⊥)

These equations will be used repeatedly in the rest of the
paper.

A. Informational completeness on one side

We begin our investigation by considering the spe-
cial case where one party, say Alice, can perform an
informationally complete measurement. We then have
R(A)⊥ = {0}, which implies that

R(A⊗ B)⊥ = Ls(HA)⊗R(B)⊥ (2)

by our previous observation. In particular, if also Bob
performs an informationally complete measurement, then
R(A⊗B)⊥ = {0}, which confirms the usual form of local
distinguishability: A ⊗ B is informationally complete if
both A and B are such. Interestingly, the next result
shows that also pure state informational completeness on
Bob’s side carries over to the composite measurement.

Proposition 1. Let A be an informationally complete
and B a pure state informationally complete measure-
ment. Then A⊗B is pure state informationally complete.

Proof. As we noted earlier, in order to prove the pure
state informational completeness of A ⊗ B, we need to
show that the rank of any nonzero matrix T inR(A⊗B)⊥

is at least 3. From (2) we see that a nonzero T ∈ R(A⊗
B)⊥ can be written in a block form as

T =


T11 T12 · · · T1,dA
T21 T22 · · · T2,dA

...
...

. . .
...

TdA,1 TdA,2 · · · TdA,dA

 ,

where dA = dimHA and each Tjk is an element of the
complex linear span of R(B)⊥ satisfying T ∗jk = Tkj .

Firstly, suppose that Tjj 6= 0 for some j = 1, . . . , dA.
We have rank(Tjj) ≥ 3 since Tjj ∈ R(B)⊥ and B is
pure state informationally complete. This implies that
rank(T ) ≥ 3 as rank(T ) ≥ rank(Tjj).

Secondly, suppose that Tjj = 0 for all j = 1, . . . , dA,
thus Tjk 6= 0 for some j 6= k. Since Tjk need not be
selfadjoint, it may be not in R(B)⊥. However, the real
part ReTjk = (Tjk + T ∗jk)/2 and the imaginary part

ImTjk = (Tjk − T ∗jk)/2i are selfadjoint and therefore el-

ements of R(B)⊥. Since Tjk 6= 0, we have ReTjk 6= 0
or ImTjk 6= 0. It thus suffices to show that rank(T ) ≥
max{rank(ReTjk), rank(ImTjk)}. To see this, we denote

T̃ =

(
0 Tjk
T ∗jk 0

)
.

As T̃ is a submatrix of T , we have rank(T ) ≥ rank(T̃ ).
We further observe that

T̃ = V T̃0V
∗

where

T̃0 =

(
ImTjk ReTjk
ReTjk −ImTjk

)
and V is the unitary block matrix

V =
1√
2

(
1 −i1
−i1 1

)
.

Since we have rank(T̃ ) = rank(T̃0) and moreover

rank(T̃0) ≥ max{rank(ReTjk), rank(ImTjk)}, this im-
plies

rank(T ) ≥ max{rank(ReTjk), rank(ImTjk)} ≥ 3 .

B. Qutrit on one side

We now wish to drop the assumption of informational
completeness for Alice’s measurement, and assume only
that she can distinguish all pure states. However, as the
dimensions of the systems increase, so does the complex-
ity of the space R(A ⊗ B)⊥. As a result, an exhaustive
answer to our question still remains to be found.

In the special case that Alice’s system is a qutrit, the
structure of R(A⊗B)⊥ is manageable. Suppose that A is
pure state informationally complete. We have then two
possibilities: (i)R(A)⊥ = {0}, in which case A is actually
informationally complete with respect to all states, or (ii)
R(A)⊥ = RS = {rS : r ∈ R} for some invertible matrix
S. It can be shown that these are the only possibilities
for pure state informational completeness for a qutrit sys-
tem [4] . The case (i) was already treated earlier, so we
concentrate on (ii). In that case we have

R(A⊗ B)⊥ = (S ⊗ Ls (HB))⊕ (R(A)⊗R(B)⊥) . (3)

This simplified structure allows us to prove the next re-
sult.

Proposition 2. Let dimHA = 3. Then A ⊗ B is pure
state informationally complete if and only if A and B are
pure state informationally complete.

Proof. One implication has already been established at
the beginning of this section. Let us then prove the other
one. Assume that A and B are both pure state informa-
tionally complete. We may assume that neither of them
is informationally complete since this case was already in
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Proposition 1. Let R(A)⊥ = RS with a full rank matrix
S. It is not restrictive to assume that

S =

 s1 0 0
0 s2 0
0 0 s3


where si ∈ R with s1s2s3 6= 0 and s1 + s2 + s3 = 0. By
(3) any T ∈ R(A⊗B)⊥ can be written as a block matrix

T =

 T11 T12 T13
T21 T22 T23
T31 T32 T33


where Tjj = sjL + Rj with Rj ∈ R(B)⊥ and L ∈
Ls (HB), and each Tjk with j 6= k is from the complex
linear span of R(B)⊥ and satisfies T ∗jk = Tkj .

Choose the unitary block matrix

U =
1√
6

√21
√

2eiα 1
√

2eiβ 1√
31 0 −

√
3eiβ 1

1 −2eiα 1 eiβ 1

 .

Then T̃ = UTU∗ is such that

T̃11 =
1

3

3∑
i=1

Ri +
2

3
[ReT21 cosα− ImT21 sinα

+ ReT31 cosβ − ImT31 sinβ

+ ReT32 cos(β − α)− ImT32 sin(β − α)] .

If now T̃11 6= 0 for some α, β, then rank(T ) = rank(T̃ ) ≥
rank(T̃11) ≥ 3 since T̃11 ∈ R(B)⊥ and B is pure state

informationally complete. Suppose instead that T̃11 = 0
for all α, β. Then by the linear independence of the func-
tions 1, cosα, sinα, cosβ, sinβ, cos(β−α) and sin(β−α)

in the two variables α and β, we have
∑3
j=1Rj = 0 and

Tjk = 0 for j 6= k. Thus, if Tjj 6= 0 for all j, then
rank(T ) ≥ 3 trivially. If otherwise Tjj = 0 for some j,
then L = −Rj/sj , and Tkk = Rk − (sk/sj)Rj ∈ R(B)⊥

is 0 or has rank at least 3 by the pure state informa-
tional completeness of B. Thus, T = 0 or rank(T ) ≥
rank(Tkk) ≥ 3 for some k. In conclusion, A ⊗ B is pure
state informationally complete.

IV. VERIFYING PURITY

In order for a pure state informationally complete mea-
surement to be useful, the experimenter must know a pri-
ori that the system is in a pure state. Since the purity
of the state is a very delicate property, it would be de-
sirable to be able to verify this premise directly from the
statistics. Furthermore, as the ultimate goal is the de-
termination of the state after verifying the premise, one
actually needs a measurement that can distinguish an
arbitrary pure state from any other state, pure or mixed.

We say that a measurement is verifiably pure state
informationally complete if the measurement outcome

statistics of a pure state is different from the outcome
statstics of any other state [5]. Note that the minimal
number of measurement outcomes needed for verifiable
pure state informational completeness also scales linearly
with the dimension of the system [5]. A mathematical
criterion for this property can be formulated as follows
[6]: an observable A is verifiably pure state information-
ally complete if and only if every nonzero T ∈ R(A)⊥ has
rank↓(T ) ≥ 2, where

rank↓(T ) = min{rank(T + |T |), rank(T − |T |)}

is the minimum between the number of strictly positive
and strictly negative eigenvalues of T .

As an immediate consequence, in the qubit and qutrit
cases verifiable pure state informational completeness is
equivalent to informational completeness. Indeed, in
these cases the above criterion implies that A is verifi-
ably pure state informationally complete if and only if
R(A)⊥ = {0}.

For composite systems verifiable pure state informa-
tional completeness behaves in a similar way as pure state
informational completeness. Indeed, as done in the pre-
vious section, one can easily prove that a necessary con-
dition for A⊗B to be verifiably pure state informationally
complete is that both A and B are such. Moreover, the
next two results are the complete analogues of Proposi-
tions 1 and 2.

Proposition 3. Let A be an informationally complete
measurement. If B is verifiably pure state information-
ally complete, then A ⊗ B is verifiably pure state infor-
mationally complete.

Proof. It is not restrictive to assume that dB =
dimHB ≥ 4, as otherwise the verifiable pure state in-
formational completeness of B implies that B is informa-
tionally complete, and the claim is the usual local distin-
guishability.

As in the proof of Proposition 1, each element T ∈
R(A ⊗ B)⊥ can be written as a dA × dA block matrix
with entries Tij in the complex linear span of the set
R(B)⊥, and such that T ∗ij = Tji. We now assume that
T 6= 0 and show that rank↓(T ) ≥ 2. By the criterion
stated above, this will imply the verifiable pure state in-
formational completeness of A⊗ B.

If Tii 6= 0 for some i, then Tii ∈ R(B)⊥ \ {0}, hence
rank↓(Tii) ≥ 2. We claim that in this case rank↓(T ) ≥ 2.
Indeed, Tii is a compression of T to a dB-dimensional
subspace of HA ⊗HB = CdAdB . The Cauchy interlacing
theorem (see [11, Corollary III.1.5]) states that, for each
j = 1, 2, . . . , dB ,

λj(T ) ≥ λj(Tii) ≥ λj+dB(dA−1)(T ) ,

where λj(T ), λj(Tii) are the eigenvalues of T and Tii,
respectively, possibly repeated according to their multi-
plicities and listed in decreasing order. The condition
rank↓(Tii) ≥ 2 means that Tii has at least 2 strictly pos-
itive and 2 strictly negative eigenvalues. Hence, the first
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of the Cauchy interlacing inequalities yields

λj(T ) ≥ λj(Tii) > 0 for j = 1, 2

and the second gives

0 > λj(Tii) ≥ λj+dB(dA−1)(T ) for j = dB − 1, dB .

In other words, T also has at least 2 strictly positive and
2 strictly negative eigenvalues, that is, rank↓(T ) ≥ 2.

Finally it remains to consider the case in which Tii = 0
for all i = 1, . . . , dA. As T 6= 0, we have Tij 6= 0 for some
i 6= j. By relabeling the entries of T if necessary, we
can assume that i = 1 and j = 2. Consider then the
upper-left square minor

T̃ =

(
0 T12
T ∗12 0

)
= UT̃+U

∗ = V T̃−V
∗

where

T̃+ =

(
ReT12 i ImT12
−i ImT12 −ReT12

)
T̃− =

(
ImT12 ReT12
ReT12 −ImT12

)
and U and V are the unitary block matrices

U =
1√
2

(
1 −1
1 1

)
V =

1√
2

(
1 −i1
−i1 1

)
.

By another application of the Cauchy interlacing inequal-
ities,

rank↓(T ) ≥ rank↓(T̃ ) = rank↓(T̃+) ≥ rank↓(ReT12)

and

rank↓(T ) ≥ rank↓(T̃ ) = rank↓(T̃−) ≥ rank↓(ImT12) .

Both ReT12 and ImT12 belong to R(B)⊥ and at least
one of them is nonzero as T12 is nonzero. Therefore,
rank↓(T ) ≥ 2.

Proposition 4. Let dimHA = 3. Then A⊗ B is verifi-
ably pure state informationally complete if and only if A
and B are verifiably pure state informationally complete.

Proof. As already noticed, necessity is easy. On the other
hand, in dimension 3 verifiable pure state informational
completeness is equivalent to informational completeness,
hence sufficiency follows by Proposition 3.

V. EXTENSION TO MULTIPARTITE SYSTEMS

Since in Proposition 2 no assumption regarding the
dimension of Bob’s system was made, we can use it to
obtain an extension to the multipartite case. Suppose
that we have N quantum systems, each of which is either

a qubit or a qutrit, and suppose that we have the cor-
responding N pure state informationally complete mea-
surements described by the POVMs Ai. We denote

A(x) =

N⊗
i=1

Ai(xi), x = (x1, . . . , xN ).

We consider the splitting of the POVM into two parts

A = A1 ⊗

(
N⊗
i=2

Ai

)
.

Propositions 1 and 2 tell us that A is pure state informa-
tionally complete if and only if each of the two factors
is such (recall that a pure state informationally complete
qubit measurement is necessarily informationally com-
plete). By induction, we may conclude that actually A
is pure state informationally complete if and only if each
component Ai is such. .

This multipartite extension also gives a class of
POVMs on higher dimensional systems for which the
pure state informational completeness of a pair of
POVMs carries over to their tensor product. Namely,
suppose that the only prime components of the dimen-
sions dA and dB are 2 and 3, that is dA = 2nA3mA and
dB = 2nB3mA . This means that we can write

HA =

 nA⊗
j=1

C2

⊗(mA⊗
k=1

C3

)
,

and similarly for HB . Suppose now that A and B are
pure state informationally complete POVMs which also
factorize into tensor products

A =

nA+mA⊗
j=1

Aj , B =

nB+mB⊗
k=1

Bk

where each component acts on C2 or C3. Each compo-
nent must be pure state informationally complete, and
therefore by our multipartite result, so is A⊗ B.

VI. CONCLUSIONS

An entangled pure state of a composite system has
mixed reduced states. For this reason, a local measure-
ment not distinguishing mixed states may seem quite
useless for quantum tomography on a bipartite system.
However, as we have shown, if Alice can implement an
informationally complete measurement and Bob can dis-
tinguish all pure states with his measurement, then they
can together distinguish all pure states of the composite
system. Furthermore, in the case that Alice’s system is a
qutrit she can also choose to perform merely a pure state
informationally complete measurement while still main-
taining the ability to distinguish all pure bipartite states.
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In a similar manner, if Alice and Bob are able to verify
the purity of the state of their respective systems, then
in the above cases the composite measurement also has
this property.

Quantum theory has two quite opposite features: in-
formation is stored globally (entanglement), but can be
retrieved with local measurements (the principle of local
distinguishability). It is an interesting question if this
balance can be properly quantified and if it is unique to
quantum theory. We believe that our investigation on the
principle of local distinguishability can stimulate a new
direction in the axiomatization of quantum theory, but

also may help to design quantum tomography schemes
with reduced resources.
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