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Quadratures in quantum homodyne tomography

Q,P : position and momentum operators on H = L2(R)

W (q,p) = ei(pQ−qP) : Weyl operators

They satisfy the Weyl commutation relations

W (u)W (u′) = e−i S(u,u′)
2 W (u + u′) = e−iS(u,u′)W (u′)W (u)

with the symplectic form

S(u,u′) = u1u′2 − u′1u2

D = {D ⊂ R2 | D is a 1-dimensional subspace}

⇒ W |D is a unitary representation of (D,+)

Qθ : quadrature observable along the direction θ
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Quadratures in quantum homodyne tomography

Q,P : position and momentum operators on H = L2(R)

W (q,p) = ei(pQ−qP) : Weyl operators

They satisfy the Weyl commutation relations

W (u)W (u′) = e−i S(u,u′)
2 W (u + u′) = e−iS(u,u′)W (u′)W (u)

with the symplectic form

S(u,u′) = u1u′2 − u′1u2

D = {D ⊂ R2 | D = Ruθ, uθ = (sin θ,− cos θ)}

⇒ W (ruθ) =
∫

e−irxQθ(dx) ∀r ∈ R with Qθ PVM on R

Qθ : quadrature observable along the direction θ
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Quadratures in quantum homodyne tomography

Covariance properties wrt translations:

W (u)Qθ(X )W (u)∗ = Qθ(X + u1 cos θ + u2 sin θ)

Covariance properties wrt symplectic transformations:

U(A)Qθ(X )U(A)∗ = QθA(cAX )

where A ∈ SL(2,R) and U is the metaplectic representation

Restricting to SO(2) ⊂ SL(2,R)

eiφNQθ(X )e−iφN = Qθ+φ(X )

where
N =

1
2

(Q2 + P2 − 1)
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Quadratures in finite dimensions

F = Zp with p odd prime

[W (u)f ](x) = e
2πi
p (2−1u1u2−u1x)f (x − u2) ∀f ∈ H ≡ `2(F)

The Weyl commutation relations are

W (u)W (u′) = e−
2πi
p 2−1S(u,u′)W (u + u′) = e−

2πi
p S(u,u′)W (u′)W (u)

with
S(u,u′) = u1u′2 − u′1u2

D = {D ⊂ F2 | D is a 1-dimensional subspace}

⇒ W |D is a unitary representation of (D,+)

QD : quadrature observable along the direction D
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∑
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2πi
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Quadratures in finite dimensions

Properties of quadratures in finite dimensions:

tr [QD(x)QD′(y)] =
1
p

if D 6= D′

⇒ QD(x) = |φD(x)〉〈φD(x)| with 〈φD(x) |φD′(y) 〉 =
1
p

|D| = p + 1 ⇒ the PVMs {QD | D ∈ D} give a maximal set of MUBs

Everything extends to any finite field with odd characteristic

But what happens if p = 2?

What are the symmetries of finite quadrature observables?

And what is the finite analogue of SO(2)?
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Finite phase-space

F : finite field with characteristic p

V : 2-dimensional vector space over F

Ω : 2-dimensional affine space with translation group V (phase-space)

x , y ∈ Ω ⇒ ∃!ux ,y s.t. y = x + ux ,y

L(Ω) : affine lines of Ω

D = {D ⊂ V | dimF D = 1} : directions of Ω (they are |F|+ 1)

LD(Ω) : lines with direction D ∈ D

l ∈ LD(Ω) ⇒ l = x + D = {x + d | d ∈ D} with x ∈ Ω
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Quadrature systems

Definition
A quadrature system (QS) for the affine space (Ω,V ) acting on the
Hilbert space H is a map Q : L(Ω)→ L(H) such that

(i) Q(l) is a rank-1 orthogonal projection for all l ∈ L(Ω)

(ii) for all D ∈ D ∑
l∈LD(Ω)

Q(l) = 1

(iii) for all D1,D2 ∈ D with D1 6= D2,

tr [Q(l1)Q(l2)] =
1
|F|

if l1 ∈ LD1(Ω) and l2 ∈ LD2(Ω)
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A quadrature system (QS) for the affine space (Ω,V ) acting on the
Hilbert space H is a map Q : L(Ω)→ L(H) such that

(i) Q(l) is a rank-1 orthogonal projection for all l ∈ L(Ω)
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1
|F|

if l1 ∈ LD1(Ω) and l2 ∈ LD2(Ω)

(i), (ii) ⇒ dimH = |F|
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Quadrature systems

Definition
A quadrature system (QS) for the affine space (Ω,V ) acting on the
Hilbert space H is a map Q : L(Ω)→ L(H) such that

(i) Q(l) is a rank-1 orthogonal projection for all l ∈ L(Ω)

(ii) for all D ∈ D ∑
l∈LD(Ω)

Q(l) = 1

(iii) for all D1,D2 ∈ D with D1 6= D2,

tr [Q(l1)Q(l2)] =
1
|F|

if l1 ∈ LD1(Ω) and l2 ∈ LD2(Ω)

(i), (ii) ⇒ QD := Q|LD(Ω) is a PVM on LD(Ω)
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Quadrature systems

Definition
A quadrature system (QS) for the affine space (Ω,V ) acting on the
Hilbert space H is a map Q : L(Ω)→ L(H) such that

(i) Q(l) is a rank-1 orthogonal projection for all l ∈ L(Ω)

(ii) for all D ∈ D ∑
l∈LD(Ω)

Q(l) = 1

(iii) for all D1,D2 ∈ D with D1 6= D2,

tr [Q(l1)Q(l2)] =
1
|F|

if l1 ∈ LD1(Ω) and l2 ∈ LD2(Ω)

(iii) ⇒ the PVMs {QD | D ∈ D} project on a maximal set of MUBs
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Equivalence of quadrature systems

Definition
Two QSs Q1 and Q2 acting on the Hilbert spaces H1 and H2 are
equivalent if there exists a unitary map U : H1 → H2 such that

Q2(l) = UQ1(l)U∗ ∀l ∈ L(Ω)

Our task is to classify equivalence classes of quadrature systems
having different symmetry properties
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Symmetries of the phase-space

GL(V ) o V : affine group

Fixed an origin o ∈ Ω, an element (A,v) ∈ GL(V ) o V acts on Ω:

(A,v) · x = o + A(uo,x + v) ∀x ∈ Ω

and on L(Ω):

(A,v) · (x + D) = (A,v) · x + AD ∀x + D ∈ L(Ω)

The action of V on L(Ω) preserves the sets LD(Ω)
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Covariant quadrature systems

If Q is a QS acting on H and (A,v) ∈ GL(V ) o V , then

Q(A,v) : L(Ω)→ L(H) Q(A,v)(l) = Q((A,v) · l)

is another QS acting on H

Definition
Let G ⊆ GL(V ) o V be any subgroup. A QS Q is G-covariant if

Q ∼ Q(A,v) ∀(A,v) ∈ G

If Q is a G-covariant QS, then

Q(A,v)(l) = U(A,v)Q(l)U(A,v)∗ ∀l ∈ L(Ω), (A,v) ∈ G

where U is a unitary projective representation of G associated with Q
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V -covariant quadrature systems

Theorem
Suppose Q is a V-covariant QS, and let o ∈ Ω. Then ∃! projective
representation W of V associated with Q and such that
(a) for all D ∈ D, the restriction W |D is an ordinary representation of

(D,+)

(b) for all D ∈ D

W (d)Q(o + D) = Q(o + D) ∀d ∈ D

Moreover, W satisfy the commutation relation

W (u)W (u′) = e−
2πi
p Tr S(u,u′)W (u′)W (u) ∀u,u′ ∈ V

where S is a symplectic form on V uniquely determined by Q

Inequivalent V -covariant QSs may induce the same symplectic form...
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and centered at o
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(ii) S(u,u) = 0 for all u ∈ V
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V -covariant quadrature systems

Theorem
Suppose Q is a V-covariant QS, and let o ∈ Ω. Then ∃! projective
representation W of V associated with Q and such that
(a) for all D ∈ D, the restriction W |D is an ordinary representation of

(D,+)

(b) for all D ∈ D

W (d)Q(o + D) = Q(o + D) ∀d ∈ D

Moreover, W satisfy the commutation relation

W (u)W (u′) = e−
2πi
p Tr S(u,u′)W (u′)W (u) ∀u,u′ ∈ V

where S is a symplectic form on V uniquely determined by Q

... but it turns out that their associated centered WSs are inequivalent

Alessandro Toigo (PoliMi, INFN) Covariant MUBs Genova, 30th June 2015 12 / 20



V -covariant quadrature systems and Weyl multipliers

Definition
A multiplier m on (V ,+) is a Weyl multiplier for S if

(i) for all D ∈ D, the restriction m|D×D = 1

(ii) m(u,u′)m(u′,u) = e−
2πi
p Tr S(u,u′) for all u,u′ ∈ V

The multiplier of a WS is a Weyl multiplier

Theorem
The correspondence between V-covariant QSs and Weyl multipliers is
one-to-one and onto
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Equivalence classes of V -covariant quadratures

For each symplectic form S, there are |F||F|−1 different Weyl multipliers
⇒ there are |F||F|−1 inequivalent V -covariant QSs inducing S

There are |F| − 1 different symplectic forms on V
⇒ there are (|F| − 1)|F||F|−1 inequivalent V -covariant QSs in total

But. . .

Theorem
Let Q1 and Q2 be any two V-covariant QSs, with Qi acting on Hi . Then
there exists a unitary operator U : H1 → H2 such that

ran Q1 = U(ran Q2)U∗
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Theorem
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there exists a unitary operator U : H1 → H2 such that
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Covariance with respect to larger groups

Theorem
Suppose G0 ⊂ GL(V ). There exist (G0 o V )-covariant QSs only if

G0 ⊆ SL(V ) = {A ∈ GL(V ) | det A = 1}

But it may happen that there do not exist (G0 o V )-covariant QSs!

Theorem
There exist (SL(V ) o V )-covariant QSs if and only if p 6= 2.
In this case, for any symplectic form S on V there is exactely one
equivalence class of (SL(V ) o V )-covariant QSs that induce S
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Nonsplit toruses

Definition
An element A ∈ SL(V ) is nonsplit if AD 6= D for all D ∈ D.

A nonsplit torus is a cyclic subgroup of SL(V ) generated by a nonsplit
element.
A nonsplit torus is maximal if it is not properly contained in any other
cyclic subgroup of SL(V ).

The action of a maximal nonsplit torus on the set D of directions
- is free and transitive if p = 2;
- has two orbits with (|F|+ 1)/2 elements in each orbit if p 6= 2.
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Covariance with respect to nonsplit toruses

Theorem
For any characteristic p and symplectic form S on V, if T ⊂ SL(V ) is a
maximal nonsplit torus, there exist T o V-covariant QSs inducing S.

Theorem
Let T be a maximal nonsplit torus, and suppose Q is a T oV-covariant
QS. Let W be the Weyl system associated with Q and centered at the
origin o ∈ Ω. Let m be its Weyl multiplier. Then, the projective
representation U of T o V associated with Q is given by

U(A,v) =
c(A)

|F|
∑
u∈V

m(u, (A− I)−1u)W (u)W (v) ∀A ∈ T \ {I} ,

where c(A) is an arbitrary phase factor.
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maximal nonsplit torus, there exist T o V-covariant QSs inducing S.

Theorem
Let T be a maximal nonsplit torus, and suppose Q is a T oV-covariant
QS. Let W be the Weyl system associated with Q and centered at the
origin o ∈ Ω. Let m be its Weyl multiplier. Then, the projective
representation U of T o V associated with Q is given by
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An example: the qubit case

If F = Z2

1 there exists a unique symplectic form on V

2 if {e1,e2} is a basis of V , a Weyl multiplier is

m(e1,e2) = m(e1 + e2,e1) = m(e2,e1 + e2) = −i
m(e2,e1) = m(e1,e1 + e2) = m(e1 + e2,e2) = i
m(e1,e1) = m(e2,e2) = m(e1 + e2,e1 + e2) = 1 .

3 there are 2 Weyl multipliers on (V ,+): m and m
⇒ 2 inequivalent V -covariant QSs Q and Q

4 SL(V ) = H o T , with T maximal nonsplit torus
5 Q and Q are (T o V )-covariant
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Thank you!
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Projective representations

A projective representation U of G satisfies

U(g1g2) = m(g1,g2) ∀g1,g2 ∈ G

where
m : G ×G→ {z ∈ C | |z| = 1}

with

m(g1,g2g3)m(g2,g3) = m(g1g2,g3)m(g1,g2) ∀g ∈ G

is the multiplier of U
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