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Dipartimento di Matematica, Università di Genova,
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into quantum operations and satisfying suitable requirements of normality and

complete positivity. Here we present the extension of the theory of quantum
supermaps, originally formulated in the finite dimensional setting, to the case

of higher-order maps transforming quantum operations on generic von Neu-

mann algebras. In this setting, we provide two dilation theorems for quantum
supermaps that are the analogues of the Stinespring and Radon-Nikodym the-
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applications are given, and in particular it is shown that all the supermaps

defined in this paper can be implemented by connecting quantum devices in

quantum circuits.
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1. Introduction

Quantum supermaps1,2 are the most general admissible transformations of
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quantum devices. Mathematically, the action of a quantum device is as-

sociated to a set of completely positive trace non-increasing maps, called

quantum operations,3,4 which transform the states of an input quantum sys-

tem into states of an output quantum system. A quantum supermap is then

a higher-order linear map that transforms quantum operations into quan-

tum operations. The theory of quantum supermaps, developed in Refs. 1,2

for finite dimensional quantum systems, has proven to be a powerful tool for

the treatment of many advanced topics in quantum information theory,5–10

including in particular the optimal cloning and the optimal learning of

unitary transformations11,12 and quantum measurements.13,14 Moreoever,

quantum supermaps are interesting for the foundations of Quantum Me-

chanics as they are the possible dynamics in a toy model of non-causal the-

ory,15 which has a quartic relation between the number of distinguishable

states and the number of parameters needed to specify a state.16 Quantum

supermaps also attracted interest in the mathematical physics literature, as

they suggested the study of a general class of positive maps between convex

subsets of the state space.17

Originally, the definition and the main theorems on quantum supermaps

were presented in the context of full matrix algebras describing finite di-

mensional quantum systems.1,2 In this paper we will present their exten-

sion to the case where the input of the quantum operations is allowed to

be a generic von Neumann algebra and the output is the C∗-algebra of

the bounded operators on an arbitrary Hilbert space. This generalization is

useful for applications, because on the one hand it allows to treat quantum

systems with infinite dimension, on the other hand it includes transfor-

mations of quantum measuring devices, i.e. maps from the commutative

algebra of functions on the outcome space to the full operator algebra on

the Hilbert space of the measured system (in the Heisenberg picture).

Quantum supermaps on finite dimensional quantum systems are de-

fined axiomatically as completely positive linear maps transforming quan-

tum operations into quantum operations (see Refs. 1,2 for the physical

motivation of linearity and complete positivity). A quantum supermap is

deterministic if it transforms quantum channels (i.e. unital completely pos-

itive maps18) into quantum channels. The following dilation theorem can

be proved for deterministic supermaps in finite dimension:1,2 denoting by

L(H) and L(K) the C∗-algebras of the linear operators on the finite dimen-

sional Hilbert spaces H and K, respectively, and writing CP (L(H),L(K))

for the set of completely positive maps sending L(H) into L(K), we have

that any deterministic supermap S transforming quantum operations in
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CP (L(H1),L(K1)) to quantum operations in CP (L(H2),L(K2)) has the

following form:

[S(E)](A) = V ∗1 [(E ⊗ IV1)(V ∗2 (A⊗ IV2)V2)]V1 ∀A ∈ L(H2) (1)

for all E ∈ CP (L(H1),L(K1)), where V1 and V2 are two ancillary separable

Hilbert spaces, V1 : K2 → K1⊗V1 and V2 : H1⊗V1 → H2⊗V2 are isometries,

IV1 is the identity channel on L(V1) and IV2 is the identity operator on V2.

In the Schrödinger (or predual) picture, eq. (1) can be rewritten

[S(E)]∗(ρ) = trV2 [V2(E∗ ⊗ IV1)(V1ρV
∗
1 )V ∗2 ] for all states ρ on K2 ,

and thus shows that the most general way to transform a quantum operation

consists in

(1) applying an invertible transformation (corresponding to the isometry

V1), which transforms the system K2 into the composite system K1⊗V1;

(2) using the input device E∗ on systemK1, thus transforming it into system

H1, while doing nothing on V1;

(3) applying an invertible transformation (corresponding to the isometry

V2), which transforms the composite system H1⊗V1 into the composite

system H2 ⊗ V2;

(4) discarding system V2 (mathematically, taking the partial trace over V2).

In this paper we will first present an extension of eq. (1) to the case of

quantum supermaps acting on quantum operations with generic von Neu-

mann algebras in the input, in particular removing all requirements of finite

dimensionality. It will turn out that the definition of a suitable notion of

normality of supermaps is the key point in order to extend the main the-

orems in the infinite dimensional case.19,20 Then, as a second step we will

state a Radon-Nikodym theorem for probabilistic supermaps, namely su-

permaps that are dominated by deterministic supermaps. The class of prob-

abilistic supermaps is particularly interesting for physical applications, as

such maps naturally appear in the description of quantum circuits that are

designed to test properties of physical devices.1,2,21 Higher-order quantum

measurements are indeed described by quantum superinstruments, which

are the generalization of the quantum instruments of Davies and Lewis.22

The third main result exposed in the paper will then be a dilation theorem

for quantum superinstruments, in analogy with Ozawa’s dilation theorem

for ordinary instruments.23

The present paper is intended as a review of Ref. 19 and our recent

still unpublished work Ref. 20. As such, it contains a survey of the main
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results and applications, but defers the interested reader to Refs. 19,20 for

a more detailed and technical exposition and for the complete proofs of the

statements. The material of the paper is organized as follows. In Section

2 we fix the elementary definitions and notations, and state or recall some

basic facts needed in the rest of the paper. In particular, in Section 2.1 we

extend the notion of increasing sequences from positive operators to normal

completely positive maps, while Section 2.2 contains some elementary re-

sults about the tensor product of weak*-continuous maps. In Section 3 we

define normal completely positive supermaps and provide some examples.

In Section 4 we state and comment the two main results of the paper, i.e our

dilation Theorem 4.1 for deterministic supermaps and its extension to prob-

abilistic supermaps contained in Theorem 4.2 (Radon-Nikodym theorem for

probabilistic supermaps). As an application of Theorem 4.1, in Section 5 we

show that every deterministic supermap transforming measurements into

quantum operations can be realized by connecting devices in a quantum

circuit. We then define quantum superinstruments in Section 6 and state a

dilation theorem for them which is the generalization of classical Ozawa’s

result for ordinary instruments (see in particular Proposition 4.2 in Ref. 23).

Finally, in Section 7 we apply the dilation theorem for quantum superin-

struments in order to show how every abstract superinstrument describing

a measurement on a quantum measuring device can be realized in a circuit.

2. Notations and preliminary results

In this paper, we will always mean by Hilbert space a complex and separable

Hilbert space, with scalar product 〈·, ·〉 linear in the second entry. If H, K
are Hilbert spaces, we denote by L(H,K) the Banach space of bounded

linear operators from H to K endowed with the uniform norm ‖·‖∞. If

H = K, the shortened notation L(H) := L(H,H) will be used, and IH will

be the identity operator in L(H). The linear space L(H) is ordered in the

usual way. We denote by ≤ the order relation in L(H), and by L(H)+ the

cone of positive operators.

Following Ref. 24 (see Definition 3.2 p. 72), by von Neumann algebra we

mean a ∗-subalgebra M⊂ L(H) such that M = (M′)′, where M′ denotes

the commutant ofM in L(H). Note that, since all Hilbert spaces considered

in the paper are separable, the von Neumann algebras considered here are

those that are sometimes called separable in the literature. When M is

regarded as an abstract von Neumann algebra (i.e. without reference to the

representing Hilbert space H), we will write its identity element IM instead

of IH. As usual, we define M+ := M∩ L(H)+. The identity map on M
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will be denoted by IM, and, when M ≡ L(H), the abbreviated notation

IH := IL(H) will be used.

The algebraic tensor product of linear spaces U , V will be written U⊗̂V ,

while the notation H⊗K will be reserved to denote the Hilbert space tensor

product of the Hilbert spaces H and K. The inclusion H⊗̂K ⊂ H⊗K holds,

and it is actually an equality iff H or K is finite dimensional.

If A ∈ L(H) and B ∈ L(K), their tensor product A ⊗ B, which is well

defined as a linear map on H⊗̂K, uniquely extends to a bounded operator

A⊗B ∈ L(H⊗K) in the usual way (see e.g. p. 183 in Ref. 24). Thus, the

algebraic tensor product L(H)⊗̂L(K) can be regarded as a linear subspace

of L(H⊗K). Even in this case, the equality L(H)⊗̂L(K) = L(H⊗K) holds

iff H or K is finite dimensional. More generally, let M ⊂ L(H) and N ⊂
L(K) be two von Neumann algebras. Then, M⊗̂N is a linear subspace of

L(H⊗K). Its weak*-closure is the von Neumann algebraM⊗̄N ⊂ L(H⊗K)

(see Definition 1.3 p. 183 in Ref. 24). Clearly, M⊗̂N =M⊗̄N iff M or N
is finite dimensional. It is a standard fact that L(H)⊗̄L(K) = L(H ⊗ K)

(see eq. 10, p. 185 in Ref. 24).

We denote by Mn(C) the linear space of square n×n complex matrices,

which we identify as usual with the space L(Cn). If M is a von Neumann

algebra, we write M(n) := Mn(C)⊗̄M, which is a von Neumann algebra

contained in L(Cn⊗H). As remarked above,M(n) coincides with the alge-

braic tensor product Mn(C)⊗̂M. If E : Mm(C)→Mn(C) and F :M→N
are linear operators, we then see that their algebraic tensor product can

be regarded as a linear map E ⊗ F :M(m) → N (n). Since both M(m) and

N (n) are von Neumann algebras, it makes sense to speak about positivity

and boundedness of E ⊗ F . This fact is at the heart of the following two

very well known definitions. In them, we use In to denote the identity map

on Mn(C), i.e. In := IMn(C).

Definition 2.1. Let M, N be two von Neumann algebras. Then a linear

map E :M→N is

- completely positive (CP) if the linear map In ⊗ E is positive, i.e. maps

M(n)
+ into N (n)

+, for all n ∈ N;

- completely bounded (CB) if there exists C > 0 such that, for all n ∈ N,

‖(In ⊗ E)(Ã)‖∞ ≤ C‖Ã‖∞ ∀Ã ∈M(n),

i.e. if the linear map In ⊗ E is bounded from the Banach space M(n)

into the Banach space N (n) for all n ∈ N, and the uniform norms of all

the maps {In ⊗ E}n∈N are majorized by a constant independent of n.
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We recall that a positive linear map E :M→N is normal if it preserves

the limits of increasing and bounded sequences, i.e. E(An) ↑ E(A) in N for

all increasing sequences {An}n∈N and A in M+ such that An ↑ A (as

usual, the notation An ↑ A means that A is the lower upper bound of the

sequence {An}n∈N inM, see e.g. Lemma 1.7.4 in Ref. 25). It is a standard

fact that a positive linear map E : M → N is normal if and only if it is

weak*-continuous (Theorem 1.13.2 in Ref. 25).

We introduce the following notations

- CB (M,N ) is the linear space of completely bounded and weak*-

continuous maps from M to N ;

- CP (M,N ) is the set of normal completely positive maps from M to

N ;

- CP1 (M,N ) is the set of quantum channels from M to N , i.e. the

subset of elements E ∈ CP (M,N ) such that E(IM) = IN .

Remark 2.1. Suppose M ⊂ Mn(C) and N ⊂ Mn(C). Then the set

CB (M,N ) coincides with the space of all linear maps from M to N (see

e.g. Exercise 3.11 in Ref. 26).

It is well known that each CP map is CB (Proposition 3.6 in Ref. 26) and

that each CB map is in the the linear span of four CP maps (Theorem 8.5

in Ref. 26). This fact still holds true when one restricts to weak*-continuous

maps, as the next theorem shows (see also Ref. 27 and Theorem 2 in Ref. 19

for the particular case M = L(H) and N = L(K)).

Theorem 2.1. The inclusion CP (M,N ) ⊂ CB (M,N ) holds, and

CP (M,N ) is a cone in the linear space CB (M,N ). For N ≡ L(K),

the linear space spanned by CP (M,L(K)) coincides with CB (M,L(K)).

More precisely, if E ∈ CB (M,L(K)), then there exists four maps Ek ∈
CP (M,L(K)) (k = 0, 1, 2, 3) such that E =

∑3
k=0 i

kEk.

The cone CP (M,N ) induces a linear ordering in the space CB (M,N ),

that we will denote by �. Namely, given two maps E ,F ∈ CB (M,N ), we

will write E � F whenever F − E ∈ CP (M,N ).

Two of the main features of CB weak*-continuous maps which we will

need in the rest of the paper are the following:

- a notion of limit can be defined for a particular class of sequences

in CB (M,N ), which is the analogue of the lower upper bound for

increasing bounded sequences of operators;
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- if M1, M2, N1, N2 are von Neumann algebras, the maps in

CB (M1,N1) and CB (M2,N2) can be tensored in order to obtain ele-

ments of CB (M1⊗̄M2,N1⊗̄N2).

As these concepts are the main two ingredients in our definition of su-

permaps and in the proof of a dilation theorem for them, we devote the

next two sections to their explanation.

2.1. Increasing sequences of normal CP maps

We now introduce two definitions for sequences of maps in CP (M,N )

that are analogous to the notion of increasing and bounded sequences of

operators. We say that a sequence {En}n∈N of elements in CP (M,N ) is

• CP-increasing if Em � En whenever m ≤ n,

• CP-bounded if there exists a map E ∈ CP (M,N ) such that En � E for

all n ∈ N.

The following result now shows that the notion of lower upper bound can

be extended to CP-incresing and CP-bounded sequences in CP (M,N ).

Proposition 2.1. If {En}n∈N is a sequence in CP (M,N ) which is CP-

increasing and CP-bounded, then there exists a unique E ∈ CP (M,N ) such

that

wk*-lim
n

En(A) = E(A) ∀A ∈M .

E has the following property: En � E for all n ∈ N, and, if E ′ ∈
CP (M,N ) is such that En � E ′ for all n ∈ N, then E � E ′.

If {En}n∈N and E are as in the statement of the above proposition, then

we write En ⇑ E .

We now give the most useful application of the previous result. First,

note that the simplest example of maps in CB (M,L(K)) is constructed in

the following way. Suppose that M is a von Neumann algebra contained

in L(H). For E ∈ L(H,K), F ∈ L(K,H), denote by E �M F the linear

operator

E �M F :M→ L(K) , (E �M F )(A) = EAF ∀A ∈M .

Then it is easy to show that E �M F ∈ CB (M,L(K)), and, if E = F ∗,

actually F ∗ �M F ∈ CP (M,L(K)). The importance of the elementary

maps E �M F ’s is made clear by the next theorem.
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Theorem 2.2 (Kraus theorem). Suppose M ⊂ L(H) is a von Neu-

mann algebra. Then, E ∈ CP (M,L(K)) if and only if there exists a finite

or countable set I ⊂ N and a sequence {Ei}i∈I of elements in L(K,H) such

that the sequence of partial sums {
∑
i≤nE

∗
i �M Ei}n∈N converges to E in

CP (M,L(K)) in the sense of Proposition 2.1.

If E and {Ei}i∈I are as in item (2) of the above theorem, the expression∑
i∈I E

∗
i �M Ei is the Kraus form of E .

Kraus theorem is very important, as it shows that every map in

CB (M,L(K)) can be decomposed into a (possibly infinite) sum of elemen-

tary maps Ei �M Fi. Indeed, by Theorem 2.1 we can choose four elements

Ek ∈ CP (M,L(K)) (k = 0, 1, 2, 3) such that E =
∑3
k=0 i

kEk, and by Theo-

rem 2.2 each Ek can be written in the Kraus form Ek =
∑
i∈Ik E

(k)∗
i �ME(k)

i .

It is clear, however, that such decomposition is not unique even if E ∈
CP (M,L(K)) itself.

2.2. Tensor product of weak*-continuous CB maps

If E : L(H1) → L(K1) and F : L(H2) → L(K2) are linear bounded maps,

their tensor product E ⊗F is well defined as a linear map L(H1)⊗̂L(H2)→
L(K1)⊗̂L(K2). However, unless H1 and K1, or alternatively H2 and K2,

are finite dimensional, in general one can not extend E ⊗ F to an operator

L(H1 ⊗ H2) → L(K1 ⊗ K2). Weak*-continuous CB maps constitute an

important exception to this obstruction, as it is made clear by the following

proposition.

Proposition 2.2. Let M1, M2, N1, N2 be von Neumann algebras. Given

two maps E ∈ CB (M1,N1) and F ∈ CB (M2,N2), there exists a unique

map E ⊗ F ∈ CB (M1⊗̄M2,N1⊗̄N2) such that

(E ⊗ F)(A⊗B) = E(A)⊗F(B) ∀A ∈M1, B ∈M2 .

If E and F are CP, then E ⊗ F ∈ CP (M1⊗̄M2,N1⊗̄N2).

Note that, ifM1 and N1 (or, equivelently,M2 and N2) are finite dimen-

sional, we had already a notion of tensor product at our disposal, i.e. the

algebraic tensor product. Indeed, when M1 = Mm(C) and N1 = Mn(C),

the product E⊗F defined in Proposition 2.2 clearly coincides with the alge-

braic product that we already encountered in the definition of CB and CP

maps (see Definition 2.1, where E = In). Moreover, in this case we actually

have the equality

CB (Mm(C),Mn(C)) ⊗̂CB (M,N ) = CB
(
M(m),N (n)

)
. (2)
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It is easy to check that the tensor product defined above preserves or-

dering (i.e. E1 � E2 and F1 � F2 imply E1⊗F1 � E2⊗F2) and lower upper

bounds (i.e., if Eλ, E and F are normal CP maps such that Eλ ⇑ E , then

Eλ ⊗F ⇑ E ⊗ F).

3. Quantum supermaps

In this section, we introduce the central objects in our study, i.e. the set

of linear maps S : CB (M1,N1) → CB (M2,N2) which mathematically

describe the physically admissible transformations of quantum channels.

Before giving the precise definition, we need to fix the following terminology.

Definition 3.1. Suppose M1, M2, N1, N2 are von Neumann algebras. A

linear map S : CB (M1,N1)→ CB (M2,N2) is

- positive if S(E) � 0 for all E � 0;

- completely positive (CP) if the map

In ⊗ S : CB
(
M(n)

1 ,N (n)
1

)
→ CB

(
M(n)

2 ,N (n)
2

)
is positive for every n ∈ N, where In is the identity map on the space

CB (Mn(C),Mn(C));

- normal if S(En) ⇑ S(E) for all sequences {En}n∈N in CP (M1,N1) such

that En ⇑ E .

Note that in the above definition of complete positivity we used the iden-

tification CB
(
M(n),N (n)

)
= CB (Mn(C),Mn(C)) ⊗̂CB (M,N ) of eq. (2).

We are now in position to define quantum supermaps.

Definition 3.2. A quantum supermap (or simply, supermap) is a normal

completely positive linear map S : CB (M1,N1)→ CB (M2,N2).

The convex set of quantum supermaps from CB (M1,N1) to

CB (M2,N2) will be denoted by SCP (M1,N1;M2,N2). A partial

order � can be introduced in it as follows: given two maps

S1,S2 ∈ SCP (M1,N1;M2,N2), we write S1 � S2 if S2 − S1 ∈
SCP (M1,N1;M2,N2).

We now specialize the definition of quantum supermaps to the following

two main cases of interest.

Definition 3.3. A quantum supermap S ∈ SCP (M1,N1;M2,N2) is

- deterministic if it preserves the set of quantum channels, that is, if

S(E) ∈ CP1 (M2,N2) for all E ∈ CP1 (M1,N1);
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- probabilistic if a deterministic supermap T ∈ SCP (M1,N1;M2,N2)

exists, such that S� T.

Deterministic supermaps are clearly probabilistic. The subset of de-

terministic supermaps in SCP (M1,N1;M2,N2) will be labeled by

SCP1 (M1,N1;M2,N2).

Obviously, the composition of two quantum supermaps is a supermap:

for every S1 ∈ SCP (M1,N1;M2,N2) and S2 ∈ SCP (M2,N2;M3,N3),

we have S2S1 ∈ SCP (M1,N1;M3,N3). Similarly, the composition of two

probabilistic [resp. deterministic] supermaps is a probabilistic [resp. deter-

ministic] supermap.

We now introduce two examples of supermaps which will play a very

important role in the next section.

Example 3.1 (Concatenation). Given two maps A ∈ CP (N1,N2) and

B ∈ CP (M2,M1), define the linear map

CA,B : CB (M1,N1)→ CB (M2,N2) ,

CA,B(E) = AEB ∀E ∈ CB (M1,N1) .

Then CA,B ∈ SCP (M1,N1;M2,N2). Moreover, if A and B are quantum

channels, then CA,B is deterministic.

Example 3.2 (Amplification). Suppose V is a Hilbert space, and define

the linear map

ΠV : CB (M,N )→ CB (M⊗̄L(V),N⊗̄L(V)) ,

ΠV(E) = E ⊗ IV ∀E ∈ CB (M,N ) ,

where we recall that IV := IL(V) (cf. Proposition 2.2 for the definition of

the tensor product). Then the map ΠV is a deterministic supermap, that is,

ΠV ∈ SCP1 (M,N ;M⊗̄L(V),N⊗̄L(V)).

The main result in the next two sections is that every deterministic

or probabilistic supermap in SCP (M1,L(K1);M2,L(K2)) is the composi-

tion of an amplification followed by a concatenation (Theorems 4.1 and 4.2

below).

4. Dilation of deterministic and probabilistic supermaps

Our central result is the following dilation theorem for deterministic su-

permaps.
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Theorem 4.1 (Dilation of deterministic supermaps). Suppose M1,

M2 are von Neumann algebras. A linear map S : CB (M1,L(K1)) →
CB (M2,L(K2)) is a deterministic supermap if and only if there exists a

triple (V, V, F), where

- V is a Hilbert space

- V : K2 → K1 ⊗ V is an isometry

- F is a quantum channel in CP1 (M2,M1⊗̄L(V))

such that

[S(E)](A) = V ∗ [(E ⊗ IV)F(A)]V ∀E ∈ CB (M1,L(K1)) , A ∈M2 . (3)

The triple (V, V, F) can always be chosen in a way that

V = span {(u∗ ⊗ IV)V v | u ∈ K1 , v ∈ K2} . (4)

We remark that in eq. (4) the adjoint u∗ of u ∈ K1 is the linear functional

u∗ : w 7→ 〈u,w〉 on K1.

Note that, if we define the quantum channel A := V ∗�L(K1⊗V) V , then

eq. (3) is equivalent to

S = CA,FΠV ,

where CA,F and ΠV are the concatenation and amplification supermaps

defined in Examples 3.1 and 3.2. In particular, we see that, if a linear

map S : CB (M1,L(K1)) → CB (M2,L(K2)) is defined as in eq. (3), then

S ∈ SCP1 (M1,L(K1);M2,L(K2)) by the composition property of deter-

ministic supermaps. The converse statement is more difficult to be shown,

and a sketch of its proof will be provided in the next subsection.

Definition 4.1. If a Hilbert space V, an isometry V : K2 → K1 ⊗ V, and

a quantum channel F ∈ CP1 (M2,M1⊗̄L(V)) are such that eq. (3) holds,

then we say that the triple (V, V, F) is a dilation of the supermap S. If also

eq. (4) holds, then we say that the dilation (V, V, F) is minimal.

The importance of the minimality property is highlighted by the follow-

ing fact.

Proposition 4.1. Let (V, V, F) and (V ′, V ′, F ′) be two dilations of the

deterministic supermap S ∈ SCP1 (M1,L(K1);M2,L(K2)). If (V, V, F)

is minimal, then there exists a unique isometry W : V → V ′ such that

V ′ = (IK1
⊗W )V and F(A) = (IM1

⊗W ∗)F ′(A)(IM1
⊗W ) for all A ∈M2.

Moreover, if also the dilation (V ′, V ′, F ′) is minimal, then the isometry W

is actually unitary.
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Remark 4.1. Suppose M1 = L(H1) and M2 ⊂ L(H2). In this case, a

linear map S : CB (L(H1),L(K1)) → CB (M2,L(K2)) is a deterministic

supermap if and only if there exist two separable Hilbert spaces V,U and

two isometries V : K2 → K1 ⊗ V, U : H1 ⊗ V → H2 ⊗ U such that

[S(E)](A) = V ∗ [(E ⊗ IV)(U∗(A⊗ IU )U)]V (5)

for all E ∈ CB (L(H1),L(K1)) and A ∈ M2. Indeed, by Stinespring theo-

rem (Theorem 4.3 p. 165 in Ref. 28 and the discussion following it) every

quantum channel F ∈ CP1 (M2,L(H1)⊗̄L(V)) = CP1 (M2,L(H1 ⊗ V))

can be written as

F(A) = U∗(A⊗ IU )U ∀A ∈M2

for some separable Hilbert space U and some isometry U : H1⊗V → H2⊗U .

Eq. (5) then follows by eq. (3). Note that in this way we recover Theorem

5 of Ref. 19 as a particular case of Theorem 4.1 above.

Remark 4.2. As anticipated in the Introduction, eq. (3) is the desired

generalization of the analogous finite dimensional result in Refs. 1,2. The

physical interpretation of the dilation of deterministic supermaps is clear in

the Schrödinger picture: indeed, turning eq. (3) into its predual, we obtain

[S(E)]∗(ρ) = F∗ [(E ⊗ IV)∗(V ρV
∗)]

for all ρ in the space T (K2) of trace class operators on K2 and E ∈
CB (M1,L(K1)). If Mi = L(Hi), take the Stinespring dilation F(A) =

U∗(A⊗ IU )U of F . The last equation then rewrites

[S(E)]∗(ρ) = trU {U [(E ⊗ IV)∗(V ρV
∗)]U∗}

where trU denotes the partial trace over U . If ρ is a quantum state (i.e. ρ ≥ 0

and tr (ρ) = 1), this means that the quantum system with Hilbert space K2

first undergoes the invertible evolution V , then the dilated quantum channel

(E ⊗ IV)∗, and finally the invertible evolution U , after which the ancillary

system with Hilbert space U is discarded. It is interesting to note that the

same kind of sequential composition of invertible evolutions also appears in

a very different context: the reconstruction of quantum stochastic processes

from correlation kernels.29–31 That context is very different from the present

framework of higher-order maps, and it is a remarkable feature of Theorem

4.1 that any deterministic supermap on the space of quantum operations

can be achieved through a two-step sequence of invertible evolutions.

Theorem 4.1 contains as a special case the Stinespring dilation of quan-

tum channels. This fact is illustrated in the following example.
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Example 4.1 (Stinespring theorem). Suppose that M1 = M2 = C,

the trivial von Neumann algebra. In this case we have the identification

CB (C,L(Ki)) = L(Ki). Precisely, the element E ∈ CB (C,Ki) is iden-

tified with the operator AE = E(1) ∈ L(Ki). Moreover, we clearly have

CP1 (M2,M1⊗̄L(V)) = {IV}, hence eq. (3) reads

[S(E)](1) = V ∗(AE ⊗ IV)V ,

which is just Stinespring dilation for normal CP maps. A linear map S :

L(K1) → L(K2) is thus in SCP1 (C,L(K1);C,L(K2)) if and only if it is a

unital normal CP map, i.e. a quantum channel.

The dilation theorem for deterministic supermaps can be generalized

to probabilistic supermaps. In this case, the following theorem provides an

analog of the Radon-Nikodym theorem for CP maps (compare with Refs. 32,

33, and see also Ref. 34 for the particular case of quantum operations).

Theorem 4.2 (Radon-Nikodym theorem for supermaps). Suppose

S ∈ SCP1 (M1,L(K1);M2,L(K2)) and let (V, V, F) be its minimal di-

lation. If T ∈ SCP (M1,L(K1);M2,L(K2)) is such that T� S, then there

exists a unique element G ∈ CP (M2,M1⊗̄L(V)) with G � F and such that

[T(E)] (A) = V ∗[(E ⊗ IV)G(A)]V ∀E ∈ CB (M1,L(K1)) , A ∈M2 . (6)

Definition 4.2. With the notations of Theorem 4.2, the map G ∈
CP (M2,M1⊗̄L(V)) defined by eq. (6) is the Radon-Nikodym derivative

of the supermap T with respect to S.

4.1. Sketch of the proof of Theorem 4.1

Here we provide a sketch of the proof of our central dilation Theorem 4.1.

The interested reader is referred to Refs. 19,20 for the details.

In the following, we will restrict ourselves to the simplified

case in which the deterministic supermap S belongs to the set

SCP (L(H),L(H);N ,L(K)), i.e. assume M1 = L(K1) in the notations of

Theorem 4.1. The proof can be divided into several steps.

(1) Each supermap S ∈ SCP (L(H),L(H);N ,L(K)) defines a sesquilin-

ear form 〈·, ·〉1 on the algebraic tensor product L(H)⊗̂N⊗̂K as follows

〈E1 ⊗A1 ⊗ v1, E2 ⊗A2 ⊗ v2〉1 := 〈v1, [S (E∗1 �M1
E2)] (A∗1A2) v2〉 .

It is not difficult to show that complete positivity of S implies that the

form 〈·, ·〉1 is positive semidefinite. If R ⊂ L(H)⊗̂N⊗̂K is the radical of the

form 〈·, ·〉1, the quotient space L(H)⊗̂N⊗̂K/R can then be completed to a
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Hilbert space, say Û1. We denote by 〈·, ·〉1 the resulting scalar product in

Û1.

(2) We can also use 〈·, ·〉1 to introduce a second positive semidefinite

sesquilinear form 〈·, ·〉2, this time defined on the algebraic tensor product

L(H)⊗̂K and given by

〈E1 ⊗ v1, E2 ⊗ v2〉2 := 〈E1 ⊗ IN ⊗ v1, E2 ⊗ IN ⊗ v2〉1 .

As before, if R′ ⊂ L(H)⊗̂K is the radical of 〈·, ·〉2, we denote by Û2 the

Hilbert space completion of the quotient L(H)⊗̂K/R′, and let 〈·, ·〉2 be the

scalar product extended to Û2. It can be proven that the Hilbert space Û2

is separable.

(3) Now, we define two linear maps

U1 : L(H)⊗̂K → L(H)⊗̂N⊗̂K U1(E ⊗ v) = E ⊗ IN ⊗ v
U2 : K → L(H)⊗̂K U2v = IH ⊗ v .

It is easy to verify by definitions that U1 and U2 extend to isometries

U1 : Û2 → Û1 and U2 : K → Û2, respectively.

(4) For all B ∈ N , we introduce the linear operator π1(B) on

L(H)⊗̂N⊗̂K, defined by

[π1(B)](E ⊗A⊗ v) = E ⊗BA⊗ v

for all E ∈ L(H), A ∈ N and v ∈ K. Using again the definitions, it is easy

to show that π1 extends to a normal unital ∗-homomorphism of N into

L(Û1).

(5) For all F ∈ L(H), we introduce the linear operator π2(F ) on

L(H)⊗̂K, defined by

[π2(F )](E ⊗ v) = FE ⊗ v

for all E ∈ L(H) and v ∈ K. It can be shown that also π2 extends to a

normal unital ∗-homomorphism of L(H) into L(Û2). However, we remark

that in this case the proof is more involved than in step (4), and makes

essential use of the fact that the supermap S is deterministic (see Lemma

4.3 in Ref. 20) and normal.

(6) By Lemma 2.2 p. 139 in Ref. 3, separability of Û2 and normality of π2

imply that there exists a (separable) Hilbert space V such that Û2 = H⊗V
and π2(F ) = F ⊗ IV for all F ∈ L(H). Note that, if E ∈ L(H), A ∈ N and

v ∈ K, then by an immediate application of definitions we have

π1(A)U1π2(E)U2v = E ⊗A⊗ v as an element of L(H)⊗̂N⊗̂K.
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(7) We define a linear map F : N → L(Û2) = L(H⊗ V), given by

F(A) := U∗1π1(A)U1 ∀A ∈ N .

Clearly, F is a unital CP map. By normality of the representation π1, it

follows that actually F ∈ CP1 (N ,L(H⊗ V)).

(8) At this point, we are in position to prove eq. (3) for elementary

CP maps. Indeed, if E ∈ L(H), A ∈ N and v, w ∈ K, then we have, for

E = E∗ �L(H) E,

〈v, [S(E)] (A)w〉 = 〈E ⊗ IN ⊗ v,E ⊗A⊗ w〉1
= 〈U1π2(E)U2v, π1(A)U1π2(E)U2w〉1
= 〈π2(E)U2v,F(A)π2(E)U2w〉2
= 〈v, U∗2 (E∗ ⊗ IV)F(A)(E ⊗ IV)U2w〉
= 〈v, U∗2 [(E ⊗ IV)F(A)]U2w〉 .

Setting V := U2, we then obtain

[S(E)] (A) = V ∗[(E ⊗ IV)F(A)]V ∀A ∈ N ,

i.e. eq. (3) in the special case E = E∗ �L(H) E.

(9) By Kraus Theorem 2.2, eq. (3) for generic E ∈ CP (L(H),L(H))

then follows from step (8) using normality of S and of the amplification

supermap ΠU : E 7→ E ⊗ IU . Finally, linearity and Theorem 2.1 extend the

equality to all E ∈ CB (L(H),L(H)). This concludes the proof of Theorem

4.1.

5. An application of Theorem 4.1: transforming a quantum

measurement into a quantum channel

For simplicity we consider here quantum measurements with a countable set

of outcomes, denoted byX. In the algebraic language, a measurement on the

quantum system with Hilbert space K1 and with outcomes in X is described

by a quantum channel E ∈ CP1 (M1,L(K1)), where M1 ≡ `∞(X) is the

von Neumann algebra of the bounded complex functions (i.e. sequences)

on X with uniform norm ‖f‖∞ := supi∈X |fi|. The channel E maps the

function f ∈ `∞(X) into the operator

E(f) =
∑
i∈X

fi Pi ∈ L(K1) , (7)

where each Pi is a non-negative operator in L(K1) and
∑
i∈X Pi = IK1

.

Note that the map i 7→ Pi is a normalized positive operator valued mea-

sure (POVM) based on the discrete space X and with values in L(K1).
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Actually, eq. (7) allows us to identify the convex set of measurements

CP1 (`∞(X),L(K1)) with the set of all normalized L(K1)-valued POVMs

on X.a

The probability of obtaining the outcome i ∈ X when the measurement

is performed on a system prepared in the quantum state ρ ∈ T (K1) =

L(K1)∗ is given by the Born rule

pi = tr (ρPi) ,

and the expectation value of the function f ∈ `∞(X) with respect to the

probability distribution p is given by

Ep(f) :=
∑
i∈X

pifi = tr [ρE(f)] .

The above equation allows us to interpret the channel E as an operator

valued expectation (see e.g. Ref. 35).

Now, consider the deterministic supermaps sending quantum measure-

ments in CP (`∞(X),L(K1)) to quantum operations in CP (M2,L(K2)),

where M2 ≡ L(H2). In this case, our dilation Theorem 4.1 (in the

predual form of Remark 4.2) states that every deterministic supermap

S : CB (`∞(X),L(K1))→ CB (L(H2),L(K2)) is of the form

[S(E)]∗(ρ) = F∗[(E ⊗ IV)∗(V ρV
∗)] ∀E ∈ CB (`∞(X),L(K1)) , ρ ∈ T (K2)

(8)

where V is a Hilbert space, V : K2 → K1 ⊗ V is an isometry, and F ∈
CP1 (L(H2), `∞(X)⊗̄L(V)) is a quantum channel. In our case, we have the

identification

`∞(X)⊗̄L(V) ' `∞(X;L(V)) ,

where `∞(X;L(V)) is the von Neumann algebra of the bounded L(V)-

valued functions on X. Its predual space is

(`∞(X)⊗̄L(V))∗ ' `1(X; T (V)) ,

i.e. the space of norm-summable sequences with index in X and values in

the Banach space of the trace class operators on V (see Theorem 1.22.13

in Ref. 25). In the Schrödinger picture, the channel F∗ can be realized by

first reading the classical information carried by the system with algebra

aIndeed, by commutativity of `∞(X) the set CP1 (`∞(X),L(K1)) coincides with the set

of all normalized weak*-continuous positive maps from `∞(X) into L(K1) (Theorem 3.11
in Ref. 26). The latter set is just the set of all normalized L(K1)-valued POVMs on X,

the identification being the one given in eq. (7).
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`∞(X) and, conditionally to the value i ∈ X, by performing the quantum

channel Fi ∗ : T (V)→ T (H2) given by

Fi ∗(σ) = F∗(δi σ) ∀σ ∈ T (V) ,

where δi σ ∈ `1(X; T (V)) is the sequence (δi σ)k = δik σ ∀k ∈ X (δik is just

Kronecker delta). Indeed, in this way eq. (8) can be rewritten

[S(E)]∗(ρ) =
∑
i∈X
Fi ∗[(E ⊗ IV)∗(V ρV

∗)i] .

In other words, Theorem 4.1 states that the most general transformation

of a quantum measurement on K1 into a quantum channel from states on

K2 to states on H2 can be realized by

(1) applying an invertible dynamics (the isometry V ) that transforms the

input system K2 into the composite system K1 ⊗ V, where V is an

ancillary system;

(2) performing the given measurement E on K1, thus obtaining the outcome

i ∈ X;

(3) conditionally to the outcome i ∈ X, applying a physical transformation

(the channel Fi ∗) on the ancillary system V, thus converting it into the

output system H2.

6. Superinstruments

Quantum superinstruments describe measurement processes where the

measured object is not a quantum system, as in ordinary instruments, but

rather a quantum device. While ordinary quantum instruments are defined

as measures with values in the set of quantum operations (see Ref. 22, and

also Ref. 3 for a more complete exposition), quantum superinstruments

are defined as probability measures with values in the set of quantum su-

permaps.

Definition 6.1. Let Ω be a measurable space with σ-algebra σ(Ω)

and let S be a map from σ(Ω) to SCP (M1,L(K1);M2,L(K2)), send-

ing the measurable subset B ∈ σ(Ω) to the quantum supermap SB ∈
SCP (M1,L(K1);M2,L(K2)). We say that S is a quantum superinstrument

if it satisfies the following properties:

(i) SΩ is deterministic;

(ii) if n ∈ N ∪ {∞} and B =
⋃n
i=1Bi with Bi ∩ Bj = ∅ for i 6= j, then

SB =
∑n
i=1 SBi

, where if n =∞ convergence of the series is understood
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in the following sense:

[SB(E)](A) = wk*-lim
k

k∑
i=1

[SBi
(E)](A)

for all E ∈ CB (M1,L(K1)) and A ∈M2.

We will briefly see that every quantum superinstrument is associated to an

ordinary quantum instrument in an unique way. Before giving the precise

statement, we recall the notion of quantum instrument, which is central in

the statistical description of quantum measurements:

Definition 6.2. A map J : σ(Ω) → CP (M,N ) is a quantum instrument

if it satisfies the following properties:

(i) JΩ is a quantum channel;

(ii) if n ∈ N ∪ {∞} and B =
⋃n
i=1Bi with Bi ∩ Bj = ∅ for i 6= j, then

JB =
∑n
i=1 JBi

, where if n =∞ convergence of the series is understood

in the following sense:

JB(A) = wk*-lim
k

k∑
i=1

JBi(A) ∀A ∈M .

With an easy application of Radon-Nikodym Theorem 4.2, one can then

prove the following dilation theorem for quantum superinstruments.

Theorem 6.1 (Dilation of quantum superinstruments).

Suppose that S : σ(Ω) → SCP (M1,L(K1);M2,L(K2)) is a quantum

superinstrument and let (V, V, F) be the minimal dilation of the deter-

ministic supermap SΩ. Then there exists a unique quantum instrument

J : σ(Ω)→ CP (M2,M1⊗̄L(V)) such that

[SB(E)](A) = V ∗[(E ⊗ IV)JB(A)]V ∀E ∈ CB (M1,L(K1)) , A ∈M2 (9)

for all B ∈ σ(Ω).

The physical interpretation of the dilation of quantum superinstruments

is clear in the Schrödinger picture. Indeed, taking the predual of eq. (9), we

have for all ρ ∈ T (K2) and E ∈ CB (M1,L(K1))

[SB(E)]∗(ρ) = JB ∗ [(E ⊗ IV)∗(V ρV
∗)] .

This means that a quantum state ρ first is coupled with an ancillary system

with Hilbert space V and the overall system undergoes the invertible evolu-

tion V ; then the system is transformed by means of the quantum channel E ,

while nothing is done on the ancilla; finally, the quantum measurement J is

performed on the system + ancilla, and after that the ancilla is discarded.
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7. Application of Theorem 6.1: Measuring a measurement

Suppose that we want to characterize some property of a quantum measur-

ing device on a system with Hilbert space K1: for example, we may have a

device performing a projective measurement on an unknown orthonormal

basis, and want to find out the basis. In this case the set of possible an-

swers to our question is thus the set of all orthonormal bases. In a more

abstract setting, the possible outcomes will constitute a measure space Ω

with σ-algebra σ(Ω). This includes also the case of full tomography of the

measurement device,36–39 in which the outcomes in Ω label all possible

measurements.

The mathematical object describing our task will be a superinstrument

taking the given measurement as input and yielding an outcome in the set

B ∈ σ(Ω) with some probability. In the algebraic framework, we will de-

scribe the input measurement as a quantum channel E ∈ CP (M1,L(K1)),

whereM1 ≡ `∞(X) is the algebra of the complex bounded functions on X

(see the discussion in Section 5).

7.1. Outcome statistics for a measurement on a measuring

device

If we only care about the outcomes in Ω and their statistical distri-

bution, then the output of the superinstrument will be trivial, that is

M2 ≡ L(K2) ≡ C. In this case, Theorem 6.1 states that every superin-

strument S : σ(Ω)→ SCP (`∞(X),L(K1);C,C) will be of the form

SB(E) = 〈v, (E ⊗ IV)(JB)v〉 ∀E ∈ CB (`∞(X),L(K1)) , B ∈ σ(Ω) ,

where V is an ancillary Hilbert space, v ∈ K1 ⊗ V is a unit vector, and

J : σ(Ω) → CP (C,M1⊗̄L(V)) ' `∞(X;L(V)) is just a weak*-countably

additive positive measure on Ω with values in `∞(X;L(V)), satisfying

(JΩ)i = IV ∀i ∈ X. Note that in this case each supermap SB is actu-

ally a linear map CB (`∞(X),L(K1))→ C, and, if E is a quantum channel,

the map B 7→ SB(E) is a probability measure on Ω. In the Schrödinger

picture

SB(E) = [JB ∗(E ⊗ IV)∗](ωv) , (10)

where ωv is the state in T (K1 ⊗ V) given by ωv(A) := 〈v,Av〉 ∀A ∈ L(K1⊗
V). Note that JB ∗ : `1(X; T (V))→ C. Thus, if for all i ∈ X we define the

following normalized POVM on Ω

Qi : σ(Ω)→ L(V) , Qi,B := (JB)i ,
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then we have

JB ∗(δi σ) = tr (σQi,B) ∀σ ∈ T (V)

and eq. (10) becomes

SB(E) =
∑
i∈X

tr [Qi,B(E ⊗ IV)∗(ωv)i] ,

which shows that, conditionally on the classical information i ∈ X, we just

perform a measurement of the normalized POVM Qi on the states in T (V).

In other words, Theorem 6.1 claims that the most general way to extract

information about a measuring device on system K1 consists in

(1) preparing a pure bipartite state ωv in K1 ⊗ V;

(2) performing the given measurement E on K1, thus obtaining the outcome

i ∈ X;

(3) conditionally on the outcome i ∈ X, performing a measurement (the

POVM Qi) on the ancillary system V, thus obtaining an outcome in Ω.

Note that the choice of the POVM Qi depends in general on the outcome

of the first measurement E .

7.2. Tranformations of measuring devices induced by a

higher-order measurement

In a quantum measurement it is often interesting to consider not only the

statistics of the outcomes, but also how the measured object changes due

to the measurement process. For example, in the case of ordinary quan-

tum measurements, one is interested in studying the state reduction due to

the occurrence of particular measurement outcomes We can ask the same

question in the case of higher-order measurements on quantum devices: for

example, we can imagine a measurement process where a measuring device

is tested, producing outcomes in Ω, and transformed into a new measuring

device. This situation is described mathematically by a quantum superin-

strument with outcomes in Ω, sending measurements in CP (M1,L(K1)) to

measurements in CP (M2,L(K2)), where M1 ≡ `∞(X) and M2 ≡ `∞(Y )

for some countable sets X and Y .

In this case, Theorem 6.1 states that every superinstrument S : σ(Ω)→
SCP (`∞(X),L(K1); `∞(Y ),L(K2)) is of the form

[SB(E)](f) = V ∗[(E ⊗ IV)JB(f)]V ∀E ∈ CB (`∞(X),L(K1)) , f ∈ `∞(Y )

for all B ∈ σ(Ω), where V is an ancillary Hilbert space, V ∈ L(K2,K1 ⊗V)

is an isometry, and J : σ(Ω)→ CP (`∞(Y ), `∞(X;L(V))) is an instrument.
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Note that, by commutativity of `∞(Y ), the set CP (`∞(Y ), `∞(X;L(V)))

is actually the set of weak*-continuous positive maps from `∞(Y ) into

`∞(X;L(V)). If for all i ∈ X we define the positive map

Ji,B : `∞(Y )→ L(V) , Ji,B(f) := JB(f)i ,

then the mapping Ji : σ(Ω) → CP (`∞(Y ),L(V)) is an instrument, with

preduals

Ji,B ∗ : T (V)→ `1(Y ) , Ji,B ∗(σ) = JB ∗(δi σ)

for all B ∈ σ(Ω). From the relation

[SB(E)]∗(ρ) = [JB ∗(E ⊗ IV)∗](V ρV
∗) =

∑
i∈X
Ji,B ∗[(E ⊗ IV)∗(V ρV

∗)i] ,

holding for all states ρ ∈ T (K2), we then see that the most general mea-

surement on a quantum measuring device can be implemented by

(1) applying an invertible dynamics (the isometry V ) that transforms the

input system K2 into the composite system K1 ⊗ V, where V is an

ancillary system;

(2) performing the given measurement E on K1, thus obtaining the outcome

i ∈ X;

(3) conditionally to the outcome i ∈ X, performing a quantum measure-

ment (the predual instrument Ji ∗), thus obtaining an outcome in Ω and

transforming the ancillary system V into the classical system described

by the commutative algebra `∞(Y ).

When Ω is a countable set, we have that the instrument J : σ(Ω) →
CP (`∞(Y ), `∞(X,L(V))) is completely specified by its action on singleton

sets, that is, by the quantum operations {Jω ∈ CP (`∞(Y ), `∞(X,L(V))) |
ω ∈ Ω}. In this case, if for all i ∈ X we set

Q
(i)
ω,j := Jω(δj)i = Ji,ω(δj) ∀(ω, j) ∈ Ω× Y ,

then the map (ω, j) 7→ Q
(i)
ω,j is a normalized POVM on the product set

Ω× Y and with values in L(V). Note that, in terms of the POVM Q(i), we

can express each Ji,ω as

Ji,ω(f) =
∑
j∈Y

fj Q
(i)
ω,j ∀f ∈ `∞(Y )

or, equivalently,

(Ji,ω ∗(σ))j = tr
(
σQ

(i)
ω,j

)
∀σ ∈ T (V) .
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In other words, the step (3) in the measurement process can be interpreted

as a quantum measurement with outcome (ω, j) ∈ Ω × Y , where only the

classical information concerning the index j ∈ Y is encoded in a physical

system available for future experiments, whereas the information concerning

index ω ∈ Ω becomes unavailable after being red out by the experimenter.
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