Covariant positive operator valued measures and instruments: an overview

Alessandro Toigo

Politecnico di Milano, INFN sezione di Genova

Milan, 9 December 2009

イロト イボト イヨト イヨト

Indice

- Observables and instruments
- Symmetry groups and covariant measurements
- Examples

2 Structure theorems

- General structure theorems
- Explicit structure theorems and examples

3 References

Indice

Measurements in Quantum Mechanics

- Observables and instruments
- Symmetry groups and covariant measurements
- Examples

Structure theorems

- General structure theorems
- Explicit structure theorems and examples

3 References

イロト イポト イヨト イヨト

Observables and instruments Symmetry groups and covariant measurements Examples

Mathematical setting

- $\mathcal{H} = \text{Hilbert space of the quantum system}$
- $\mathcal{L}(\mathcal{H}) =$ bounded operators on \mathcal{H}
- $\mathcal{U}(\mathcal{H}) =$ unitary operators on \mathcal{H}
- T(H) = trace class operators
- $\mathcal{S}(\mathcal{H}) = \{ \mathcal{S} \in \mathcal{T}(\mathcal{H}) \mid \mathcal{S} \ge 0, \, \mathrm{tr}\, [\mathcal{S}] = 1 \} = \mathrm{state space}$
- $\mathcal{L}(\mathcal{T}(\mathcal{H})) =$ bounded operators in $\mathcal{T}(\mathcal{H})$
- (Ω, \mathcal{A}) = measurable outcome space

Observables and instruments Symmetry groups and covariant measurements Examples

Mathematical setting

• $\mathcal{H} = \text{Hilbert space of the quantum system}$

- $\mathcal{L}(\mathcal{H}) =$ bounded operators on \mathcal{H}
- $\mathcal{U}(\mathcal{H}) =$ unitary operators on \mathcal{H}
- T(H) = trace class operators
- $S(\mathcal{H}) = \{ S \in \mathcal{T}(\mathcal{H}) \mid S \ge 0, \operatorname{tr}[S] = 1 \} = \text{state space}$
- $\mathcal{L}(\mathcal{T}(\mathcal{H})) =$ bounded operators in $\mathcal{T}(\mathcal{H})$
- (Ω, \mathcal{A}) = measurable outcome space

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Observables and instruments Symmetry groups and covariant measurements Examples

Mathematical setting

- $\mathcal{H} =$ Hilbert space of the quantum system
- $\mathcal{L}(\mathcal{H}) =$ bounded operators on \mathcal{H}
- $\mathcal{U}(\mathcal{H}) =$ unitary operators on \mathcal{H}
- T(H) = trace class operators
- $S(\mathcal{H}) = \{ S \in \mathcal{T}(\mathcal{H}) \mid S \ge 0, \operatorname{tr}[S] = 1 \} = \text{state space}$
- $\mathcal{L}(\mathcal{T}(\mathcal{H})) =$ bounded operators in $\mathcal{T}(\mathcal{H})$
- (Ω, \mathcal{A}) = measurable outcome space

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Observables and instruments Symmetry groups and covariant measurements Examples

Mathematical setting

- $\mathcal{H} =$ Hilbert space of the quantum system
- $\mathcal{L}(\mathcal{H}) =$ bounded operators on \mathcal{H}
- $\mathcal{U}(\mathcal{H}) =$ unitary operators on \mathcal{H}
- T(H) = trace class operators
- $S(\mathcal{H}) = \{ S \in \mathcal{T}(\mathcal{H}) \mid S \ge 0, \operatorname{tr}[S] = 1 \} = \text{state space}$
- $\mathcal{L}(\mathcal{T}(\mathcal{H})) =$ bounded operators in $\mathcal{T}(\mathcal{H})$
- (Ω, \mathcal{A}) = measurable outcome space

ヘロト 人間 ト 人 ヨト 人 ヨト

Observables and instruments Symmetry groups and covariant measurements Examples

Mathematical setting

- $\mathcal{H} =$ Hilbert space of the quantum system
- $\mathcal{L}(\mathcal{H}) =$ bounded operators on \mathcal{H}
- $\mathcal{U}(\mathcal{H}) =$ unitary operators on \mathcal{H}
- T(H) = trace class operators
- $S(\mathcal{H}) = \{ S \in \mathcal{T}(\mathcal{H}) \mid S \ge 0, \operatorname{tr}[S] = 1 \} = \text{state space}$
- $\mathcal{L}(\mathcal{T}(\mathcal{H})) =$ bounded operators in $\mathcal{T}(\mathcal{H})$
- (Ω, \mathcal{A}) = measurable outcome space

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Observables and instruments Symmetry groups and covariant measurements Examples

Mathematical setting

- $\mathcal{H} =$ Hilbert space of the quantum system
- $\mathcal{L}(\mathcal{H}) =$ bounded operators on \mathcal{H}
- $\mathcal{U}(\mathcal{H}) =$ unitary operators on \mathcal{H}
- T(H) = trace class operators
- $\mathcal{S}(\mathcal{H}) = \{ \boldsymbol{S} \in \mathcal{T}(\mathcal{H}) \mid \boldsymbol{S} \ge 0, \, \mathrm{tr} \, [\boldsymbol{S}] = 1 \} = \mathrm{state \ space}$
- $\mathcal{L}(\mathcal{T}(\mathcal{H})) =$ bounded operators in $\mathcal{T}(\mathcal{H})$
- (Ω, \mathcal{A}) = measurable outcome space

・ロト ・ 理 ト ・ ヨ ト ・

Observables and instruments Symmetry groups and covariant measurements Examples

Mathematical setting

- $\mathcal{H} =$ Hilbert space of the quantum system
- $\mathcal{L}(\mathcal{H}) =$ bounded operators on \mathcal{H}
- $\mathcal{U}(\mathcal{H}) =$ unitary operators on \mathcal{H}
- T(H) = trace class operators
- $S(\mathcal{H}) = \{ S \in \mathcal{T}(\mathcal{H}) \mid S \ge 0, \operatorname{tr}[S] = 1 \} = \text{state space}$
- $\mathcal{L}(\mathcal{T}(\mathcal{H})) =$ bounded operators in $\mathcal{T}(\mathcal{H})$
- (Ω, \mathcal{A}) = measurable outcome space

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Observables and instruments Symmetry groups and covariant measurements Examples

Mathematical setting

- $\mathcal{H} =$ Hilbert space of the quantum system
- $\mathcal{L}(\mathcal{H}) =$ bounded operators on \mathcal{H}
- $\mathcal{U}(\mathcal{H}) =$ unitary operators on \mathcal{H}
- T(H) = trace class operators
- $S(\mathcal{H}) = \{ S \in \mathcal{T}(\mathcal{H}) \mid S \ge 0, \operatorname{tr}[S] = 1 \} = \text{state space}$
- $\mathcal{L}(\mathcal{T}(\mathcal{H})) =$ bounded operators in $\mathcal{T}(\mathcal{H})$
- (Ω, \mathcal{A}) = measurable outcome space

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Observables and instruments Symmetry groups and covariant measurements Examples

Mathematical setting

- $\mathcal{H} = \text{Hilbert space of the quantum system}$
- $\mathcal{L}(\mathcal{H}) =$ bounded operators on \mathcal{H}
- $\mathcal{U}(\mathcal{H}) =$ unitary operators on \mathcal{H}
- T(H) = trace class operators
- $\mathcal{S}(\mathcal{H}) = \{ \mathcal{S} \in \mathcal{T}(\mathcal{H}) \mid \mathcal{S} \ge 0, \, \mathrm{tr}\, [\mathcal{S}] = 1 \} = \mathrm{state space}$
- $\mathcal{L}(\mathcal{T}(\mathcal{H})) =$ bounded operators in $\mathcal{T}(\mathcal{H})$
- (Ω, \mathcal{A}) = measurable outcome space

Observables

Definition

An observable (or positive operator valued measure, or POVM) is a mapping $E:\mathcal{A}\to\mathcal{L}(\mathcal{H})$ such that

•
$$\mathsf{E}(X) \ge 0$$
 for all $X \in \mathcal{A}$

2
$$\mathsf{E}(\Omega) = 1$$

③ WOT− $\sum_{i} E(X_i) = E(\cup_i X_i)$ if $\{X_i\}_{i \in \mathbb{N}}$ is a sequence such that $X_i \cap X_j = \emptyset$ for $i \neq j$.

The probability measure p_S^{E} on Ω

$$\mathcal{D}_{S}^{\mathsf{E}}(X) = \operatorname{tr}\left[S\mathsf{E}(X)\right]$$

describes the statistics of a measurement of E performed on S.

ヘロト 人間 トイヨト イヨト

Observables

Definition

An observable (or positive operator valued measure, or POVM) is a mapping $E:\mathcal{A}\to\mathcal{L}(\mathcal{H})$ such that

•
$$E(X) \ge 0$$
 for all $X \in A$

$$\mathbf{2} \ \mathsf{E}(\Omega) =$$

3 WOT− $\sum_i E(X_i) = E(\cup_i X_i)$ if $\{X_i\}_{i \in \mathbb{N}}$ is a sequence such that $X_i \cap X_j = \emptyset$ for $i \neq j$.

The probability measure $p_{\rm S}^{\rm E}$ on Ω

$$p_S^{\mathsf{E}}(X) = \operatorname{tr}\left[S\mathsf{E}(X)\right]$$

describes the statistics of a measurement of E performed on S.

ヘロト 人間 トイヨト イヨト

Observables

Definition

An observable (or positive operator valued measure, or POVM) is a mapping $E:\mathcal{A}\to\mathcal{L}(\mathcal{H})$ such that

- **1** $\mathsf{E}(X) \ge 0$ for all $X \in \mathcal{A}$
- **2** $E(\Omega) = 1$
- WOT $-\sum_{i} E(X_i) = E(\cup_i X_i)$ if $\{X_i\}_{i \in \mathbb{N}}$ is a sequence such that $X_i \cap X_j = \emptyset$ for $i \neq j$.

The probability measure p_S^{E} on Ω

$$p_S^{\mathsf{E}}(X) = \operatorname{tr}\left[S\mathsf{E}(X)\right]$$

describes the statistics of a measurement of E performed on S.

イロト 不得 トイヨト イヨト

Observables

Definition

An observable (or positive operator valued measure, or POVM) is a mapping $E:\mathcal{A}\to\mathcal{L}(\mathcal{H})$ such that

1
$$\mathsf{E}(X) \ge 0$$
 for all $X \in \mathcal{A}$

2 $E(\Omega) =$

③ WOT− $\sum_{i} E(X_i) = E(\cup_i X_i)$ if $\{X_i\}_{i \in \mathbb{N}}$ is a sequence such that $X_i \cap X_j = \emptyset$ for $i \neq j$.

The probability measure $p_S^{\sf E}$ on Ω

$$p_S^{\mathsf{E}}(X) = \operatorname{tr}\left[S\mathsf{E}(X)\right]$$

describes the statistics of a measurement of E performed on S.

ヘロト 人間 トイヨト イヨト

Observables

Definition

An observable (or positive operator valued measure, or POVM) is a mapping $E:\mathcal{A}\to\mathcal{L}(\mathcal{H})$ such that

•
$$\mathsf{E}(X) \ge 0$$
 for all $X \in \mathcal{A}$

2
$$\mathsf{E}(\Omega) = 1$$

③ WOT− $\sum_{i} E(X_i) = E(\cup_i X_i)$ if $\{X_i\}_{i \in \mathbb{N}}$ is a sequence such that $X_i \cap X_j = \emptyset$ for $i \neq j$.

The probability measure p_S^{E} on Ω

$$\mathcal{D}_{S}^{\mathsf{E}}(X) = \operatorname{tr}\left[S\mathsf{E}(X)\right]$$

describes the statistics of a measurement of E performed on S.

ヘロト 人間 トイヨト イヨト

Observables

Definition

An observable (or positive operator valued measure, or POVM) is a mapping $E:\mathcal{A}\to\mathcal{L}(\mathcal{H})$ such that

•
$$\mathsf{E}(X) \ge 0$$
 for all $X \in \mathcal{A}$

2
$$\mathsf{E}(\Omega) = 1$$

3 WOT−
$$\sum_i E(X_i) = E(\cup_i X_i)$$
 if $\{X_i\}_{i \in \mathbb{N}}$ is a sequence such that $X_i \cap X_j = \emptyset$ for $i \neq j$.

The probability measure p_{S}^{E} on Ω

$$p_{S}^{\mathsf{E}}(X) = \operatorname{tr}[S\mathsf{E}(X)]$$

describes the statistics of a measurement of E performed on S.

イロト イポト イヨト イヨト

Instruments

Definition

An *instrument* (or *completely positive* (*CP*) *operator valued measure*) is a mapping $\mathcal{I} : \mathcal{A} \to \mathcal{L}(\mathcal{T}(\mathcal{H}))$ such that

- $\mathcal{I}(X)$ is CP for all $X \in \mathcal{A}$
- 2 tr $[[\mathcal{I}(\Omega)](\mathcal{T})] = tr [\mathcal{T}]$ for all $\mathcal{T} \in \mathcal{T}(\mathcal{H})$
- Strong− $\sum_{i} \mathcal{I}(X_i) = \mathcal{I}(\cup_i X_i)$ if $\{X_i\}_{i \in \mathbb{N}}$ is a sequence such that $X_i \cap X_j = \emptyset$ for $i \neq j$.

Instruments

Definition

An instrument (or completely positive (CP) operator valued measure) is a mapping $\mathcal{I} : \mathcal{A} \to \mathcal{L}(\mathcal{T}(\mathcal{H}))$ such that

- $\mathcal{I}(X)$ is CP for all $X \in \mathcal{A}$
 - 2 tr $[[\mathcal{I}(\Omega)](T)] =$ tr [T] for all $T \in \mathcal{T}(\mathcal{H})$
- **3** strong− $\sum_i \mathcal{I}(X_i) = \mathcal{I}(\cup_i X_i)$ if $\{X_i\}_{i \in \mathbb{N}}$ is a sequence such that $X_i \cap X_j = \emptyset$ for $i \neq j$.

Instruments

Definition

An instrument (or completely positive (CP) operator valued measure) is a mapping $\mathcal{I} : \mathcal{A} \to \mathcal{L}(\mathcal{T}(\mathcal{H}))$ such that

- ① $\mathcal{I}(X)$ is CP for all $X \in \mathcal{A}$
- 2 tr $[[\mathcal{I}(\Omega)](T)]$ = tr [T] for all $T \in \mathcal{T}(\mathcal{H})$
- **3** strong− $\sum_i \mathcal{I}(X_i) = \mathcal{I}(\cup_i X_i)$ if $\{X_i\}_{i \in \mathbb{N}}$ is a sequence such that $X_i \cap X_j = \emptyset$ for $i \neq j$.

Instruments

Definition

An instrument (or completely positive (CP) operator valued measure) is a mapping $\mathcal{I} : \mathcal{A} \to \mathcal{L}(\mathcal{T}(\mathcal{H}))$ such that

- ① $\mathcal{I}(X)$ is CP for all $X \in \mathcal{A}$
- 2 tr $[[\mathcal{I}(\Omega)](T)] =$ tr [T] for all $T \in \mathcal{T}(\mathcal{H})$
- Strong− $\sum_{i} \mathcal{I}(X_i) = \mathcal{I}(\cup_i X_i)$ if $\{X_i\}_{i \in \mathbb{N}}$ is a sequence such that $X_i \cap X_j = \emptyset$ for $i \neq j$.

Instruments

Definition

An *instrument* (or *completely positive* (*CP*) *operator valued measure*) is a mapping $\mathcal{I} : \mathcal{A} \to \mathcal{L}(\mathcal{T}(\mathcal{H}))$ such that

- $\mathcal{I}(X)$ is CP for all $X \in \mathcal{A}$
- 2 tr $[[\mathcal{I}(\Omega)](T)]$ = tr [T] for all $T \in \mathcal{T}(\mathcal{H})$
- Strong− $\sum_{i} \mathcal{I}(X_i) = \mathcal{I}(\cup_i X_i)$ if $\{X_i\}_{i \in \mathbb{N}}$ is a sequence such that $X_i \cap X_j = \emptyset$ for $i \neq j$.

Instruments

Definition

3

An *instrument* (or *completely positive* (*CP*) *operator valued measure*) is a mapping $\mathcal{I} : \mathcal{A} \to \mathcal{L}(\mathcal{T}(\mathcal{H}))$ such that

•
$$\mathcal{I}(X)$$
 is CP for all $X \in \mathcal{A}$

2 tr
$$[[\mathcal{I}(\Omega)](T)] =$$
tr $[T]$ for all $T \in \mathcal{T}(\mathcal{H})$

Notation

$$\mathcal{I}_X := \mathcal{I}(X) \in \mathcal{L}(\mathcal{T}(\mathcal{H}))$$

٦h

・ロ と く 理 と く 国 と ・

Instruments

Definition

An *instrument* (or *completely positive* (*CP*) *operator valued measure*) is a mapping $\mathcal{I} : \mathcal{A} \to \mathcal{L}(\mathcal{T}(\mathcal{H}))$ such that

- $\mathcal{I}(X)$ is CP for all $X \in \mathcal{A}$
- 2 tr $[[\mathcal{I}(\Omega)](T)]$ = tr [T] for all $T \in \mathcal{T}(\mathcal{H})$
- Strong− $\sum_{i} \mathcal{I}(X_i) = \mathcal{I}(\cup_i X_i)$ if $\{X_i\}_{i \in \mathbb{N}}$ is a sequence such that $X_i \cap X_j = \emptyset$ for $i \neq j$.

The associated observable
$$\mathsf{E}^{\mathcal{I}} : \mathcal{A} \to \mathcal{L}(\mathcal{H})$$
 is
 $\operatorname{tr} \left[\mathsf{E}^{\mathcal{I}}(X)\mathcal{T}\right] := \operatorname{tr} \left[\left[\mathcal{I}(X)\right](\mathcal{T})\right] \quad \forall \mathcal{T} \in \mathcal{T}(\mathcal{H})$

Instruments

Definition

An *instrument* (or *completely positive* (*CP*) *operator valued measure*) is a mapping $\mathcal{I} : \mathcal{A} \to \mathcal{L}(\mathcal{T}(\mathcal{H}))$ such that

- $\mathcal{I}(X)$ is CP for all $X \in \mathcal{A}$
- 2 tr $[[\mathcal{I}(\Omega)](T)]$ = tr [T] for all $T \in \mathcal{T}(\mathcal{H})$
- Strong− $\sum_{i} \mathcal{I}(X_i) = \mathcal{I}(\cup_i X_i)$ if $\{X_i\}_{i \in \mathbb{N}}$ is a sequence such that $X_i \cap X_j = \emptyset$ for $i \neq j$.

If
$$S \in \mathcal{S}(\mathcal{H})$$
, its a posteriori state is $S_X = \mathcal{I}_X(S)/\mathrm{tr}\left[\mathcal{I}_X(S)
ight] \qquad (0/0=0)$

Observables and instruments Symmetry groups and covariant measurements Examples

Group actions

A simmetry group G acts

- in S(H) by means of a projective unitary representation U
 as
 g[S] = U(g)SU(g)⁻¹
 g ∈ G, S ∈ S(H)
- in Ω by means of a measurable action

 $g[\omega] \qquad g \in G, \, \omega \in \Omega$

Technical assumptions:

- Ω is a locally compact second countable (lcsc) space, with $\mathcal{A} = \mathcal{B}(\Omega)$
- G is a lcsc topological group
- the map $G imes \Omega
 i (g, \omega) \mapsto g[\omega] \in \Omega$ is continuous

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

A simmetry group G acts

in S(H) by means of a projective unitary representation U as
 g[S] = U(g)SU(g)⁻¹
 g ∈ G, S ∈ S(H)

• in Ω by means of a measurable action

 $g[\omega] \qquad g \in G, \, \omega \in \Omega$

Technical assumptions:

- Ω is a locally compact second countable (lcsc) space, with $\mathcal{A} = \mathcal{B}(\Omega)$
- G is a lcsc topological group
- the map $G imes \Omega
 i (g, \omega) \mapsto g[\omega] \in \Omega$ is continuous

・ロト ・ 同ト ・ ヨト ・ ヨト

A simmetry group G acts

in S(H) by means of a projective unitary representation U as
 g[S] = U(g)SU(g)⁻¹
 g ∈ G, S ∈ S(H)

U(q)U(h) = m(q, h)U(qh)

• in Ω by means of a measurable action

Projective representation

 $U: G \rightarrow \mathcal{U}(\mathcal{H})$ is a projective representation if

with |m(g, h)| = 1 and $m(g, g^{-1}) = 1$

 $\mathcal{A} = \mathcal{D}(\mathcal{M})$

- G is a lcsc topological group
- the map $G imes \Omega
 i (g, \omega) \mapsto g[\omega] \in \Omega$ is continuous

・ロト ・ 同ト ・ ヨト ・ ヨト

A simmetry group G acts

- in S(H) by means of a projective unitary representation U as g[S] = U(g)SU(g)⁻¹ g ∈ G, S ∈ S(H)
- in Ω by means of a measurable action

$$g[\omega] \qquad g \in G, \, \omega \in \Omega$$

Technical assumptions:

- Ω is a locally compact second countable (lcsc) space, with $\mathcal{A} = \mathcal{B}(\Omega)$
- G is a lcsc topological group
- the map ${m G} imes \Omega
 i (g,\omega)\mapsto g[\omega]\in \Omega$ is continuous

・ロト ・ 理 ト ・ ヨ ト ・

A simmetry group G acts

- in S(H) by means of a projective unitary representation U
 as
 g[S] = U(g)SU(g)^{-1} g ∈ G, S ∈ S(H)
- in Ω by means of a measurable action

$$oldsymbol{g}[\omega] \qquad oldsymbol{g}\in oldsymbol{G}, \ \omega\in \Omega$$

Technical assumptions:

- Ω is a locally compact second countable (lcsc) space, with $\mathcal{A} = \mathcal{B}(\Omega)$
- G is a lcsc topological group
- the map ${m G} imes \Omega
 i ({m g},\omega)\mapsto {m g}[\omega]\in \Omega$ is continuous

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Observables and instruments Symmetry groups and covariant measurements Examples

Covariant measurements

Definition

An observable $\mathsf{E} : \mathcal{A} \to \mathcal{L}(\mathcal{H})$ is *covariant* if $U(g)\mathsf{E}(X)U(g)^{-1} = \mathsf{E}(g[X])$

for all $X \in \mathcal{A}, g \in G$

Definition

An instrument $\mathcal{I} : \mathcal{A} \to \mathcal{L}(\mathcal{T}(\mathcal{H}))$ is *covariant* if $U(g)\mathcal{I}_X(U(g)^{-1}TU(g))U(g)^{-1} = \mathcal{I}_{g[X]}(T)$ for all $X \in \mathcal{A}, g \in G, T \in \mathcal{T}(\mathcal{H})$

Observables and instruments Symmetry groups and covariant measurements Examples

Covariant measurements

Definition

An observable E : $\mathcal{A} \to \mathcal{L}(\mathcal{H})$ is *covariant* if

$$U(g)\mathsf{E}(X)U(g)^{-1}=\mathsf{E}(g[X])$$

for all $X \in A$, $g \in G$

Remark Defir This means

$$p^{\mathsf{E}}_{g[S]}(g[X]) = p^{\mathsf{E}}_{S}(X)$$

 $U(g)\mathcal{I}_X(U(g)^{-1}TU(g))U(g)^{-1}=\mathcal{I}_{g[X]}(T)$ for all $X\in\mathcal{A},\,g\in G,\,T\in\mathcal{T}(\mathcal{H})$

Observables and instruments Symmetry groups and covariant measurements Examples

Covariant measurements

Definition

An observable $\mathsf{E}:\mathcal{A}\to\mathcal{L}(\mathcal{H})$ is *covariant* if

$$U(g)\mathsf{E}(X)U(g)^{-1}=\mathsf{E}(g[X])$$

for all $X \in A$, $g \in G$

Definition

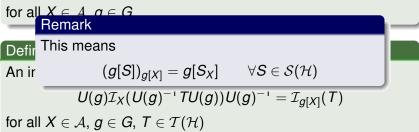
An instrument $\mathcal{I} : \mathcal{A} \to \mathcal{L}(\mathcal{T}(\mathcal{H}))$ is *covariant* if $U(g)\mathcal{I}_X(U(g)^{-1}TU(g))U(g)^{-1} = \mathcal{I}_{g[X]}(T)$ for all $X \in \mathcal{A}, g \in G, T \in \mathcal{T}(\mathcal{H})$

Observables and instruments Symmetry groups and covariant measurements Examples

Covariant measurements

Definition

An observable $\mathsf{E}:\mathcal{A} o \mathcal{L}(\mathcal{H})$ is *covariant* if $U(g)\mathsf{E}(X)U(g)^{-1}=\mathsf{E}(g[X])$



・ロト ・ 同ト ・ ヨト ・ ヨト

Measurements in Quantum Mechanics Structure theorems References Construction of the structure theorems References Constructure theorems References Constructure theorems References

Example: position and momentum (in dim. 1)

•
$$\mathcal{H} = L^2(\mathbb{R})$$

• $\Omega = \begin{cases} \mathbb{R} = \text{position} \\ \mathbb{P} = \text{momentum} \\ \mathbb{R} \times \mathbb{P} = \text{phase-space} \end{cases}$
• $G = \begin{cases} T = \text{group of translation} \\ B = \text{group of boosts} \end{cases} \simeq \mathbb{R}$
 $U: T \to \mathcal{U}(\mathcal{H}) \qquad [U(a)f](x) = f(x-a)$
• $V: B \to \mathcal{U}(\mathcal{H}) \qquad [V(p)f](x) = e^{ipx}f(x)$

э

・ロト ・ 同ト ・ ヨト ・ ヨト

 Measurements in Quantum Mechanics Structure theorems References
 Observables and instruments Symmetry groups and covariant measurement Examples

Example: position and momentum (in dim. 1)

•
$$\mathcal{H} = L^2(\mathbb{R})$$

• $\Omega = \begin{cases} \mathbb{R} = \text{position} \\ \mathbb{P} = \text{momentum} \\ \mathbb{R} \times \mathbb{P} = \text{phase-space} \end{cases}$
• $G = \begin{cases} T = \text{group of translation} \\ B = \text{group of boosts} \end{cases} \simeq \mathbb{R}$
 $U: T \to \mathcal{U}(\mathcal{H}) \qquad [U(a)f](x) = f(x-a)$
• $V: B \to \mathcal{U}(\mathcal{H}) \qquad [V(p)f](x) = e^{ipx}f(x)$

イロト 不得 トイヨト イヨト

Example: position and momentum (in dim. 1)

• $\mathcal{H} = L^2(\mathbb{R})$ • $\Omega = \begin{cases} \mathbb{R} = \text{position} \\ \mathbb{P} = \text{momentum} \\ \mathbb{R} \times \mathbb{P} = \text{phase-space} \end{cases}$ • $G = \begin{cases} T = \text{group of translation} \\ B = \text{group of boosts} \end{cases} \simeq \mathbb{R}$ $U: T \to \mathcal{U}(\mathcal{H}) \qquad [U(a)f](x) = f(x - a)$ • $V: B \to \mathcal{U}(\mathcal{H}) \qquad [V(p)f](x) = e^{ipx}f(x)$

Example: position and momentum (in dim. 1)

•
$$\mathcal{H} = L^2(\mathbb{R})$$

• $\Omega = \begin{cases} \mathbb{R} = \text{position} \\ \mathbb{P} = \text{momentum} \\ \mathbb{R} \times \mathbb{P} = \text{phase-space} \end{cases}$
• $G = \begin{cases} T = \text{group of translation} \\ B = \text{group of boosts} \end{cases} \simeq \mathbb{R}$
 $U: T \to \mathcal{U}(\mathcal{H}) \qquad [U(a)f](x) = f(x-a)$
• $V: B \to \mathcal{U}(\mathcal{H}) \qquad [V(p)f](x) = e^{ipx}f(x)$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Measurements in Quantum Mechanics Structure theorems References Examples Example: position and momentum (in dim. 1) • $\mathcal{H} = L^2(\mathbb{R})$ • $\Omega = \begin{cases} \mathbb{R} &= \text{position} \\ \mathbb{P} &= \text{momentum} \\ \mathbb{R} \times \mathbb{P} &= \text{phase-space} \end{cases}$ • $G = \left\{ \begin{array}{ll} T = \text{group of translation} \\ B = \text{group of boosts} \end{array} \right\} \simeq \mathbb{R}$ $U: T \to \mathcal{U}(\mathcal{H})$ [U(a)f](x) = f(x-a) $V: B \to \mathcal{U}(\mathcal{H})$ $[V(p)f](x) = e^{ipx}f(x)$

イロト イロト イヨト イヨト 二日

Measurements in Quantum Mechanics Structure theorems References Construction of the structure theorems References Constructure theorems References Constructure theorems References

Example: position and momentum (in dim. 1)

•
$$\mathcal{H} = L^2(\mathbb{R})$$

• $\Omega = \begin{cases} \mathbb{R} = \text{position} \\ \mathbb{P} = \text{momentum} \\ \mathbb{R} \times \mathbb{P} = \text{phase-space} \end{cases}$
• $G = \begin{cases} T = \text{group of translation} \\ B = \text{group of boosts} \end{cases} \simeq \mathbb{R}$
 $U: T \to \mathcal{U}(\mathcal{H}) \qquad [U(a)f](x) = f(x-a)$
• $V: B \to \mathcal{U}(\mathcal{H}) \qquad [V(p)f](x) = e^{ipx}f(x)$

э

Example: position and momentum (in dim. 1)

Definition

 $\mathsf{E}:\mathcal{B}(\mathbb{R})\to\mathcal{L}(\mathcal{H})$ is a position observable if

 $U(a)E(X)U(a)^{-1} = E(X + a)$ $V(p)E(X)V(p)^{-1} = E(X)$

イロト イロト イヨト イヨト 二日

Example: position and momentum (in dim. 1)

Definition

 $\mathsf{E}:\mathcal{B}(\mathbb{R})\to\mathcal{L}(\mathcal{H})$ is a position observable if

 $U(a)E(X)U(a)^{-1} = E(X + a)$ $V(p)E(X)V(p)^{-1} = E(X)$

Example

The canonical position observable is

$$[\mathsf{Q}(X)f] = \mathsf{1}_X(x)f(x) \qquad \forall f \in L^2(\mathbb{R})$$

イロト イポト イヨト イヨト 二日

Example: position and momentum (in dim. 1)

Definition

 $\mathsf{E}:\mathcal{B}(\mathbb{R})\to\mathcal{L}(\mathcal{H})$ is a position observable if

 $U(a)E(X)U(a)^{-1} = E(X + a)$ $V(p)E(X)V(p)^{-1} = E(X)$

Definition

 $F : \mathcal{B}(\mathbb{P}) \to \mathcal{L}(\mathcal{H})$ is a momentum observable if $U(a)F(Y)U(a)^{-1} = F(Y) \qquad V(p)F(Y)V(p)^{-1} = F(Y+p)$

Example: position and momentum (in dim. 1)

Definition

 $\mathsf{E}:\mathcal{B}(\mathbb{R})\to\mathcal{L}(\mathcal{H})$ is a position observable if

 $U(a)E(X)U(a)^{-1} = E(X + a)$ $V(p)E(X)V(p)^{-1} = E(X)$

Definition

$$\begin{split} \mathsf{F} &: \mathcal{B}(\mathbb{P}) \to \mathcal{L}(\mathcal{H}) \text{ is a momentum observable if} \\ & U(a)\mathsf{F}(Y)U(a)^{-1} = \mathsf{F}(Y) \qquad V(p)\mathsf{F}(Y)V(p)^{-1} = \mathsf{F}(Y+p) \end{split}$$

Example

The canonical momentum observable is

$$\mathsf{P}(Y) = \mathcal{F}^{-1}\mathsf{Q}(Y)\mathcal{F}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example: position and momentum (in dim. 1)

Definition

 $\mathsf{E}:\mathcal{B}(\mathbb{R})\to\mathcal{L}(\mathcal{H})$ is a position observable if

 $U(a)E(X)U(a)^{-1} = E(X + a)$ $V(p)E(X)V(p)^{-1} = E(X)$

Definition

$$\begin{split} \mathsf{F} &: \mathcal{B}(\mathbb{P}) \to \mathcal{L}(\mathcal{H}) \text{ is a momentum observable if} \\ & U(a)\mathsf{F}(Y)U(a)^{-1} = \mathsf{F}(Y) \qquad V(p)\mathsf{F}(Y)V(p)^{-1} = \mathsf{F}(Y+p) \end{split}$$

Definition

 $G:\mathcal{B}(\mathbb{R}\times\mathbb{P})\to\mathcal{L}(\mathcal{H})$ is a phase-space observable if

$$U(a)G(X \times Y)U(a)^{-1} = F((X + a) \times Y)$$

$$V(p)F(X \times Y)V(p)^{-1} = F(X \times (Y + p))$$

・ロ と く 理 と く 国 と ・

э

Example: position and momentum (in dim. 1)

In terms of a single irreducible projective representation

 $W: T \times B \rightarrow \mathcal{U}(\mathcal{H})$ W(a, p) = U(a)V(p)

and actions

$$(a,p)[x]_1 = x + a \quad \text{on } \mathbb{R}$$

$$(a,p)[y]_2 = y + p \quad \text{on } \mathbb{P}$$

$$(a,p)[(x,y)] = (x + a, y + p) \quad \text{on } \mathbb{R} \times \mathbb{P}$$

we have

$$W(x,p)E(X)W(x,p)^{-1} = E((x,p)[X]_1) W(x,p)F(Y)W(x,p)^{-1} = F((x,p)[Y]_2) W(x,p)G(Z)W(x,p)^{-1} = E((x,p)[Z])$$

ヘロト 人間 トイヨト イヨト

Example: position and momentum (in dim. 1)

In terms of a single irreducible projective representation

 $W: T \times B \rightarrow \mathcal{U}(\mathcal{H})$ W(a, p) = U(a)V(p)

and actions

$$\begin{array}{rcl} (a,p)[x]_1 &=& x+a & \mathrm{on} \ \mathbb{R} \\ (a,p)[y]_2 &=& y+p & \mathrm{on} \ \mathbb{P} \\ (a,p)[(x,y)] &=& (x+a,y+p) & \mathrm{on} \ \mathbb{R} \times \mathbb{P} \end{array}$$

we have

$$W(x,p)E(X)W(x,p)^{-1} = E((x,p)[X]_1) W(x,p)F(Y)W(x,p)^{-1} = F((x,p)[Y]_2) W(x,p)G(Z)W(x,p)^{-1} = E((x,p)[Z])$$

ヘロト 人間 トイヨト イヨト

Example: position and momentum (in dim. 1)

In terms of a single irreducible projective representation

$$W: T \times B \rightarrow \mathcal{U}(\mathcal{H}) \qquad W(a,p) = U(a)V(p)$$

and actions

$$\begin{array}{rcl} (a,p)[x]_1 &=& x+a & \mathrm{on} \ \mathbb{R} \\ (a,p)[y]_2 &=& y+p & \mathrm{on} \ \mathbb{P} \\ (a,p)[(x,y)] &=& (x+a,y+p) & \mathrm{on} \ \mathbb{R} \times \mathbb{P} \end{array}$$

we have

$$W(x,p)E(X)W(x,p)^{-1} = E((x,p)[X]_1) W(x,p)F(Y)W(x,p)^{-1} = F((x,p)[Y]_2) W(x,p)G(Z)W(x,p)^{-1} = E((x,p)[Z])$$

・同ト ・ヨト ・ヨト

Example: position and momentum (in dim. 1)

In terms of a single irreducible projective representation

 $W: T \times B \rightarrow \mathcal{U}(\mathcal{H})$ W(a, p) = U(a)V(p)

and actions

 $(a,p)[x]_{1} = x + a \quad \text{on } \mathbb{R}$ $(a,p)[y]_{2} = y + p \quad \text{on } \mathbb{P}$ Remark
The actions change, but the group representation is the same $W(x,p) E(X) W(x,p)^{-1} = E((x,p)[X]_{1})$ $W(x,p) F(Y) W(x,p)^{-1} = F((x,p)[Y]_{2})$ $W(x,p) G(Z) W(x,p)^{-1} = E((x,p)[Z])$

イロト イボト イヨト 一日

- *H* = span { |*n*⟩ | *n* = 0, 1, 2...} = state space for the single mode optical field
- $|z\rangle = e^{-|z|^2/2} \sum_{n \frac{z^n}{\sqrt{n!}}} |n\rangle =$ monochromatic laser light of energy |z| and phase arg z

•
$$(\Omega, \mathcal{A}) = ([0, 2\pi], \mathcal{B}([0, 2\pi])) =$$
phase

イロト 不得 トイヨト イヨト 三国

Example: phase observable for the photon

- *H* = span { | *n*⟩ | *n* = 0, 1, 2...} = state space for the single mode optical field
- $|z\rangle = e^{-|z|^2/2} \sum_{n \frac{z^n}{\sqrt{n!}}} |n\rangle =$ monochromatic laser light of energy |z| and phase arg z
- $(\Omega, \mathcal{A}) = ([0, 2\pi], \mathcal{B}([0, 2\pi])) = \text{phase}$

Example: phase observable for the photon

- *H* = span { |*n*⟩ | *n* = 0, 1, 2...} = state space for the single mode optical field
- $|z\rangle = e^{-|z|^2/2} \sum_{n \frac{z^n}{\sqrt{n!}}} |n\rangle =$ monochromatic laser light of energy |z| and phase arg z
- $(\Omega, \mathcal{A}) = ([0, 2\pi], \mathcal{B}([0, 2\pi])) = \text{phase}$

イロト イポト イヨト イヨト 二日

Example: phase observable for the photon

- *H* = span { | *n*⟩ | *n* = 0, 1, 2...} = state space for the single mode optical field
- $|z\rangle = e^{-|z|^2/2} \sum_{n \frac{z^n}{\sqrt{n!}}} |n\rangle =$ monochromatic laser light of energy |z| and phase arg z
- $(\Omega, A) = ([0, 2\pi], B([0, 2\pi])) = phase$

イロト イロト イヨト イヨト 二日

- *H* = span { | *n*⟩ | *n* = 0, 1, 2...} = state space for the single mode optical field
- $|z\rangle = e^{-|z|^2/2} \sum_{n \frac{z^n}{\sqrt{n!}}} |n\rangle =$ monochromatic laser light of energy |z| and phase arg z
- $(\Omega, A) = ([0, 2\pi], B([0, 2\pi])) = phase$

For a phase observable E we require

$$p^{\mathsf{E}}_{|{m z} e^{i heta}
angle}(X) = p^{\mathsf{E}}_{|{m z}
angle}(X + heta\,(\mathrm{mod}\;2\pi)) \qquad orall X \in \mathcal{B}(\Omega)$$

イロト イロト イヨト イヨト 二日

- *H* = span { |*n*⟩ | *n* = 0, 1, 2...} = state space for the single mode optical field
- $|z\rangle = e^{-|z|^2/2} \sum_{n \frac{z^n}{\sqrt{n!}}} |n\rangle =$ monochromatic laser light of energy |z| and phase arg z

•
$$(\Omega, \mathcal{A}) = ([0, 2\pi], \mathcal{B}([0, 2\pi])) =$$
phase

Definition

$$\begin{split} \mathsf{E} : \mathcal{B}(\Omega) \to \mathcal{L}(\mathcal{H}) \text{ is a } phase \ observable \ \mathsf{if} \\ e^{i\theta N} \mathsf{E}(X) e^{-i\theta N} = \mathsf{E}(X + \theta \pmod{2\pi})) \\ \mathsf{for \ all} \ X \in \mathcal{B}(\Omega), \ \theta \in [0, 2\pi] \end{split}$$

イロト イポト イヨト イヨト 三日

- *H* = span { |*n*⟩ | *n* = 0, 1, 2...} = state space for the single mode optical field
- $|z\rangle = e^{-|z|^2/2} \sum_{n \frac{z^n}{\sqrt{n!}}} |n\rangle =$ monochromatic laser light of energy |z| and phase arg z

• $(\Omega, A) = ([0, 2\pi], \mathcal{B}([0, 2\pi])) = \text{phase}$ Number operator

Define $N = a^*a$, with a, a^* the lowering and raising **E** : \mathcal{B} operators

$$e^{i\theta N}\mathsf{E}(X)e^{-i\theta N}=\mathsf{E}(X+\theta \pmod{2\pi})$$

for all $X \in \mathcal{B}(\Omega)$, $\theta \in [0, 2\pi]$

General structure theorems Explicit structure theorems and examples

Indice

Measurements in Quantum Mechanics

- Observables and instruments
- Symmetry groups and covariant measurements
- Examples

2 Structure theorems

- General structure theorems
- Explicit structure theorems and examples

3 References

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ E → < E →</p>

Systems of imprimitivity

Definition

A system of imprimitivity based on Ω is a triple (V, P, \mathcal{K}), where

- V is a unitary representation of G in the Hilbert space \mathcal{K}
- $P : \mathcal{B}(\Omega) \to \mathcal{L}(\mathcal{K})$ is a projection valued measure
- for all $X \in \mathcal{B}(\Omega)$, $g \in G$

 $V(g)\mathsf{P}(X)V(g)^* = \mathsf{P}(g[X])$

イロト イヨト イヨト

General structure theorems Explicit structure theorems and examples

Systems of imprimitivity

Definition

A system of imprimitivity based on Ω is a triple (V, P, \mathcal{K}), where

- V is a unitary representation of G in the Hilbert space \mathcal{K}
- P: B(Ω) → L(K) is a projection valued measure
 for all X ∈ B(Ω), q ∈ G

 $V(g)\mathsf{P}(X)V(g)^* = \mathsf{P}(g[X])$

General structure theorems Explicit structure theorems and examples

Systems of imprimitivity

Definition

A system of imprimitivity based on Ω is a triple (V, P, \mathcal{K}), where

- V is a unitary representation of G in the Hilbert space ${\cal K}$
- $\mathsf{P}: \mathcal{B}(\Omega) \to \mathcal{L}(\mathcal{K})$ is a projection valued measure
- for all $X \in \mathcal{B}(\Omega), g \in G$

 $V(g)\mathsf{P}(X)V(g)^* = \mathsf{P}(g[X])$

General structure theorems Explicit structure theorems and examples

Systems of imprimitivity

Definition

A system of imprimitivity based on Ω is a triple (V, P, \mathcal{K}), where

• V is a unitary representation of G in the Hilbert space ${\cal K}$

PVMs

A projection valued measure is a POVM P satisfying

$$\mathsf{P}(X)\mathsf{P}(Y)=\mathsf{P}(X\cap Y)$$

イロト イポト イヨト イヨト

General structure theorems Explicit structure theorems and examples

Systems of imprimitivity

Definition

A system of imprimitivity based on Ω is a triple (V, P, \mathcal{K}), where

- V is a unitary representation of G in the Hilbert space K
- $P : \mathcal{B}(\Omega) \to \mathcal{L}(\mathcal{K})$ is a projection valued measure
- for all $X \in \mathcal{B}(\Omega)$, $g \in G$

 $V(g)\mathsf{P}(X)V(g)^* = \mathsf{P}(g[X])$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Systems of imprimitivity

Definition

A system of imprimitivity based on Ω is a triple (V, P, \mathcal{K}), where

- V is a unitary representation of G in the Hilbert space \mathcal{K}
- $P : \mathcal{B}(\Omega) \to \mathcal{L}(\mathcal{K})$ is a projection valued measure
- for all $X \in \mathcal{B}(\Omega)$, $g \in G$

 $V(g)\mathsf{P}(X)V(g)^* = \mathsf{P}(g[X])$

イロト イヨト イヨト

Dilation theorem for observables

Theorem (Cattaneo, 1979)

- E is an U-covariant POVM based on Ω iff there exists
 - a system of imprimitivity (V, P, \mathcal{K}) based on Ω
 - an isometry $W : \mathcal{H} \to \mathcal{K}$ satisfying

 $WU(g) = V(g)W \quad \forall g \in G$

such that, for all $X \in \mathcal{B}(\Omega)$,

 $\mathsf{E}(X) = W^* \mathsf{P}(X) W.$

Dilation theorem for observables

Theorem (Cattaneo, 1979)

- E is an U-covariant POVM based on Ω iff there exists
 - a system of imprimitivity (V, P, \mathcal{K}) based on Ω
 - an isometry $W : \mathcal{H} \to \mathcal{K}$ satisfying

 $WU(g) = V(g)W \quad \forall g \in G$

such that, for all $X \in \mathcal{B}(\Omega)$,

 $\mathsf{E}(X) = W^* \mathsf{P}(X) W.$

Dilation theorem for observables

Theorem (Cattaneo, 1979)

- E is an U-covariant POVM based on Ω iff there exists
 - a system of imprimitivity (V, P, \mathcal{K}) based on Ω
 - an isometry $W : \mathcal{H} \to \mathcal{K}$ satisfying

 $WU(g) = V(g)W \qquad \forall g \in G$

such that, for all $X \in \mathcal{B}(\Omega)$,

 $\mathsf{E}(X) = W^* \mathsf{P}(X) W.$

イロト イボト イヨト イヨト 二日

Dilation theorem for observables

Theorem (Cattaneo, 1979)

- E is an U-covariant POVM based on Ω iff there exists
 - a system of imprimitivity (V, P, \mathcal{K}) based on Ω
 - an isometry $W : \mathcal{H} \to \mathcal{K}$ satisfying

 $WU(g) = V(g)W \quad \forall g \in G$

such that, for all $X \in \mathcal{B}(\Omega)$,

 $\mathsf{E}(X) = W^* \mathsf{P}(X) W.$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dilation theorem for instruments

Theorem (Denisov, 1990; Carmeli, Heinosaari, Toigo, 2009)

 ${\mathcal I}$ is an U-covariant instrument based on Ω iff there exists

- a system of imprimitivity (V, P, \mathcal{K}) based on Ω
- an isometry $W : \mathcal{H} \to \mathcal{K} \otimes \mathcal{H}$ satisfying

 $WU(g) = (V(g) \otimes U(g))W \quad \forall g \in G$

such that, for all $X \in \mathcal{B}(\Omega)$ and $T \in \mathcal{T}(\mathcal{H})$, $\mathcal{I}_X(T) = \operatorname{tr}_{\mathcal{K}} \left[(\mathsf{P}(X) \otimes l_{\mathcal{H}}) W T W^* \right].$

イロト イロト イヨト イヨト 二日

Dilation theorem for instruments

Theorem (Denisov, 1990; Carmeli, Heinosaari, Toigo, 2009)

- ${\mathcal I}$ is an U-covariant instrument based on Ω iff there exists
 - a system of imprimitivity (V, P, \mathcal{K}) based on Ω

• an isometry $W : \mathcal{H} \to \mathcal{K} \otimes \mathcal{H}$ satisfying

 $WU(g) = (V(g) \otimes U(g))W \qquad \forall g \in G$

such that, for all $X \in \mathcal{B}(\Omega)$ and $T \in \mathcal{T}(\mathcal{H})$, $\mathcal{I}_X(T) = \operatorname{tr}_{\mathcal{K}} \left[(\mathsf{P}(X) \otimes I_{\mathcal{H}}) W T W^* \right].$

イロト イロト イヨト イヨト 二日

Dilation theorem for instruments

Theorem (Denisov, 1990; Carmeli, Heinosaari, Toigo, 2009)

 ${\mathcal I}$ is an U-covariant instrument based on Ω iff there exists

- a system of imprimitivity (V, P, \mathcal{K}) based on Ω
- an isometry $W : \mathcal{H} \to \mathcal{K} \otimes \mathcal{H}$ satisfying

 $\mathit{WU}(g) = (\mathit{V}(g) \otimes \mathit{U}(g))\mathit{W} \qquad \forall g \in \mathit{G}$

such that, for all $X \in \mathcal{B}(\Omega)$ and $T \in \mathcal{T}(\mathcal{H})$, $\mathcal{I}_X(T) = \operatorname{tr}_{\mathcal{K}} \left[(\mathsf{P}(X) \otimes l_{\mathcal{H}}) WTW^* \right].$

ヘロト 人間 ト 人目 ト 人目 トー

Dilation theorem for instruments

Theorem (Denisov, 1990; Carmeli, Heinosaari, Toigo, 2009)

 ${\mathcal I}$ is an U-covariant instrument based on Ω iff there exists

- a system of imprimitivity (V, P, \mathcal{K}) based on Ω
- an isometry $W : \mathcal{H} \to \mathcal{K} \otimes \mathcal{H}$ satisfying

 $\mathit{WU}(g) = (\mathit{V}(g) \otimes \mathit{U}(g))\mathit{W} \qquad orall g \in \mathit{G}$

such that, for all $X \in \mathcal{B}(\Omega)$ and $T \in \mathcal{T}(\mathcal{H})$, $\mathcal{I}_X(T) = \operatorname{tr}_{\mathcal{K}} \left[(\mathsf{P}(X) \otimes I_{\mathcal{H}}) W T W^* \right].$

イロト イポト イヨト イヨト

Inducing functor and imprimitivity theorem

Basic assumptions

In the following

- *H* is a closed subgroup of *G*
- Ω is the homogeneous space G/H

Induction is a functor

 $\operatorname{Rep}(H) \ni \sigma \longmapsto (V^{\sigma}, \mathsf{P}^{\sigma}, \mathcal{K}^{\sigma}) \in \operatorname{Impr}(G, G/H)$

Theorem (Mackey)

Induction is an equivalence of categories.

Inducing functor and imprimitivity theorem

Basic assumptions

In the following

- *H* is a closed subgroup of *G*
- Ω is the homogeneous space G/H

Induction is a functor

$$\operatorname{Rep}(H) \ni \sigma \longmapsto (V^{\sigma}, \mathsf{P}^{\sigma}, \mathcal{K}^{\sigma}) \in \operatorname{Impr}(G, G/H)$$

Theorem (Mackey)

Induction is an equivalence of categories.

・ロ と く 理 と く 国 と ・

Inducing functor and imprimitivity theorem

Basic assumptions

In the following

• *H* is a closed subgroup of *G*

Example

If $H = \{1\}$ and $\sigma = 1$, then

Indu • $\mathcal{K}^{\sigma} = L^2(G, \mu_G)$

$$V^{\sigma}(g)f](h) = f(g^{-1}h)$$

 $[\mathsf{P}^{\sigma}(X)f](h) = \mathsf{1}_X(h)f(h)$

Induction is an equivalence of categories.

Inducing functor and imprimitivity theorem

Basic assumptions

In the following

• *H* is a closed subgroup of *G*

Example

If
$$H = \{1\}$$
 and $\sigma = 1$, then

Indu •
$$\mathcal{K}^{\sigma} = L^2(G, \mu_G)$$

•
$$[V^{\sigma}(g)f](h) = f(g^{-1}h)$$

•
$$[\mathsf{P}^{\sigma}(X)f](h) = \mathbf{1}_X(h)f(h)$$

Induction is an equivalence of categories.

Inducing functor and imprimitivity theorem

Basic assumptions

In the following

• *H* is a closed subgroup of *G*

Example

If
$$H = \{1\}$$
 and $\sigma = 1$, then

Indu •
$$\mathcal{K}^{\sigma} = L^2(G, \mu_G)$$

•
$$[V^{\sigma}(g)f](h) = f(g^{-1}h)$$

$$[\mathsf{P}^{\sigma}(X)f](h) = \mathsf{1}_X(h)f(h)$$

Induction is an equivalence of categories.

Inducing functor and imprimitivity theorem

Basic assumptions

In the following

• *H* is a closed subgroup of *G*

Example

If
$$H = \{1\}$$
 and $\sigma = 1$, then

ndu •
$$\mathcal{K}^{\sigma} = L^2(G, \mu_G)$$

•
$$[V^{\sigma}(g)f](h) = f(g^{-1}h)$$

$$[\mathsf{P}^{\sigma}(X)f](h) = \mathsf{1}_X(h)f(h)$$

Induction is an equivalence of categories.

・ロ と く 理 と く 国 と ・

Inducing functor and imprimitivity theorem

Basic assumptions

In the following

- *H* is a closed subgroup of *G*
- Ω is the homogeneous space G/H

Induction is a functor

$$\operatorname{Rep}(H) \ni \sigma \longmapsto (V^{\sigma}, \mathsf{P}^{\sigma}, \mathcal{K}^{\sigma}) \in \operatorname{Impr}(G, G/H)$$

Theorem (Mackey)

Induction is an equivalence of categories.

General structure theorems Explicit structure theorems and examples

General problem

For all $\sigma \in \operatorname{Rep}(H)$

Diagonalize ($V^{\sigma}, \mathcal{K}^{\sigma}$)

\downarrow

Find all possible isometries $W: \mathcal{H} \to \mathcal{K}^{\sigma}$ such that $WU(g) = V^{\sigma}(g)W \ \forall g \in G$

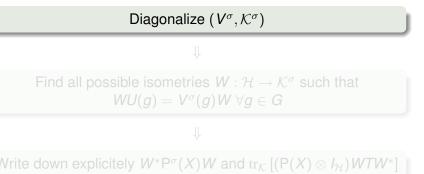
\downarrow

Write down explicitly $W^* P^{\sigma}(X) W$ and $\operatorname{tr}_{\mathcal{K}}[(P(X) \otimes I_{\mathcal{H}}) WTW^*]$

General structure theorems Explicit structure theorems and examples

General problem

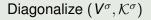
For all $\sigma \in \operatorname{Rep}(H)$



General structure theorems Explicit structure theorems and examples

General problem

For all $\sigma \in \operatorname{Rep}(H)$



₩

Find all possible isometries $W:\mathcal{H} o\mathcal{K}^\sigma$ such that $WU(g)=V^\sigma(g)W\ orall g\in G$

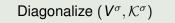
Write down explicitely $W^* P^{\sigma}(X) W$ and $\operatorname{tr}_{\mathcal{K}}[(P(X) \otimes I_{\mathcal{H}}) WTW^*]$

・ロ と く 理 と く 国 と ・

General structure theorems Explicit structure theorems and examples

General problem

For all $\sigma \in \operatorname{Rep}(H)$



₩

Find all possible isometries $W:\mathcal{H} o\mathcal{K}^\sigma$ such that $WU(g)=V^\sigma(g)W\ orall g\in G$

∜

Write down explicitely $W^* P^{\sigma}(X) W$ and $\operatorname{tr}_{\mathcal{K}} [(P(X) \otimes I_{\mathcal{H}}) WTW^*]$

Particular solutions

A complete solution is available in the following cases

- (1) G generic, H compact, U irreducible
- (2) G abelian, H generic, U generic
- (3) G compact, H generic, U generic
- (4) $G = H \ltimes K$, H normal and abelian, U irreducible

Particular solutions

A complete solution is available in the following cases

- (1) G generic, H compact, U irreducible
- (2) G abelian, H generic, U generic
- (3) G compact, H generic, U generic
- (4) $G = H \ltimes K$, H normal and abelian, U irreducible

Example

Phase-space observables and instruments \in (1)

Particular solutions

A complete solution is available in the following cases

- (1) G generic, H compact, U irreducible
- (2) G abelian, H generic, U generic
- (3) G compact, H generic, U generic
- (4) $G = H \ltimes K$, H normal and abelian, U irreducible

Example

Phase observables \in (2) \cap (3)

Particular solutions

A complete solution is available in the following cases

- (1) G generic, H compact, U irreducible
- (2) G abelian, H generic, U generic
- (3) G compact, H generic, U generic
- (4) $G = H \ltimes K$, H normal and abelian, U irreducible

Example

Position and momentum observables \in (4)

Theorem (Cassinelli, De Vito, Toigo, 2003)

Suppose U projective and irreducible, $H \subset G$ compact. Then there exists U-covariant POVMs on G/H iff U is square integrable.

In this case, there exists a selfadjoint positive operator $C: \mathcal{H} \to \mathcal{H}$ such that every U-covariant POVM on G/H is of the form

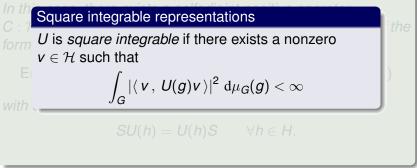
$$\mathsf{E}(X) = \int_X U(g) CSCU(g)^{-1} d\mu_{G/H}(gH) \qquad \forall X \in \mathcal{B}(G/H)$$

with $S \in S(\mathcal{H})$ such that

$$SU(h) = U(h)S \quad \forall h \in H.$$

Theorem (Cassinelli, De Vito, Toigo, 2003)

Suppose U projective and irreducible, $H \subset G$ compact. Then there exists U-covariant POVMs on G/H iff U is square integrable.



ヘロト 人間 トイヨト イヨト

Theorem (Cassinelli, De Vito, Toigo, 2003)

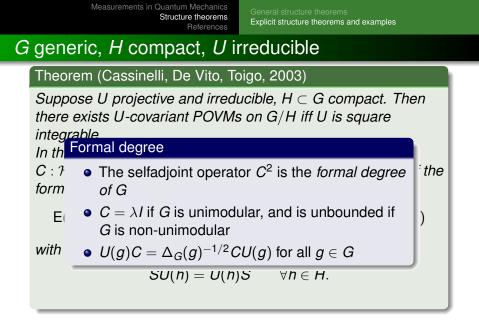
Suppose U projective and irreducible, $H \subset G$ compact. Then there exists U-covariant POVMs on G/H iff U is square integrable.

In this case, there exists a selfadjoint positive operator $C:\mathcal{H}\to\mathcal{H}$ such that every U-covariant POVM on G/H is of the form

$$\mathsf{E}(X) = \int_X U(g) CSCU(g)^{-1} d\mu_{G/H}(gH) \qquad \forall X \in \mathcal{B}(G/H)$$

with $S \in \mathcal{S}(\mathcal{H})$ such that

$$SU(h) = U(h)S \quad \forall h \in H.$$



Theorem (Carmeli, Heinosaari, Toigo 2009)

Suppose U projective irreducible, H compact. Then there exists U-covariant instruments on G/H iff U is square integrable.

In this case, if C is as before, every U-covariant instrument on G/H is of the form

 $\mathcal{I}_X^*(A) = \int_X U(g)C\Phi(U(g)^*AU(g))CU(g)^{-1} d\mu_{G/H}(gH)$ for all $X \in \mathcal{B}(G/H)$, $A \in \mathcal{L}(\mathcal{H})$, where $\Phi : \mathcal{L}(\mathcal{H}) o \mathcal{T}(\mathcal{H})$ is such that

- • is normal and CP
- tr $[\Phi(I)] = 1$

• $\Phi(U(h)AU(h)^{-1}) = U(h)\Phi(A)U(h)^{-1} \ \forall A \in \mathcal{L}(\mathcal{H}), h \in H$

・ロト ・ 理 ト ・ ヨ ト ・

Theorem (Carmeli, Heinosaari, Toigo 2009)

Suppose U projective irreducible, H compact. Then there exists U-covariant instruments on G/H iff U is square integrable. In this case, if C is as before, every U-covariant instrument on G/H is of the form

$$\mathcal{I}_X^*(A) = \int_X U(g) C\Phi(U(g)^* A U(g)) C U(g)^{-1} d\mu_{G/H}(gH)$$

or all $X \in \mathcal{B}(G/H)$, $A \in \mathcal{L}(\mathcal{H})$, where $\Phi : \mathcal{L}(\mathcal{H}) \to \mathcal{T}(\mathcal{H})$ is such that

- Φ is normal and CP
- $tr [\Phi(I)] = 1$

fc tl

• $\Phi(U(h)AU(h)^{-1}) = U(h)\Phi(A)U(h)^{-1} \ \forall A \in \mathcal{L}(\mathcal{H}), h \in H$

ヘロト 人間 ト 人目 ト 人目 トー

Position and momentum observables

Theorem

E is a position observable iff there exists a probability density ρ on $\mathbb R$ such that

$$\mathsf{E}(X) \equiv \mathsf{E}_{\rho}(X) := \int_{\mathbb{R}} \rho(X - x) \, d\mathsf{Q}(x)$$

Theorem

F is a position observable iff there exists a probability density ν on $\mathbb P$ such that

$$\mathsf{F}(Y) \equiv \mathsf{F}_{\nu}(Y) := \int_{\mathbb{P}} \nu(Y - y) \, d\mathsf{P}(y)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Position and momentum observables

Theorem

E is a position observable iff there exists a probability density ρ on $\mathbb R$ such that

$$\mathsf{E}(X) \equiv \mathsf{E}_{
ho}(X) := \int_{\mathbb{R}}
ho(X - x) \, d\mathsf{Q}(x)$$

Theorem

F is a position observable iff there exists a probability density ν on $\mathbb P$ such that

$$\mathsf{F}(Y) \equiv \mathsf{F}_{\nu}(Y) := \int_{\mathbb{P}} \nu(Y - y) \, d\mathsf{P}(y)$$

Position and momentum observables

Theorem

E is a position observable iff there exists a probability density ρ on \mathbb{R} such that

Remark

The F is on \mathbb{P} $p_{S}^{E_{\rho}} = \rho * p_{S}^{Q}$ $p_{S}^{E_{\nu}} = \nu * p_{S}^{P}$ $F(Y) \equiv F_{\nu}(Y) := \int_{\mathbb{P}} \nu(Y - y) dP(y)$

ヘロト 人間 トイヨト イヨト

Measurements in Quantum Mechanics Structure theorems References General structure theorems Explicit structure theorems and examples

Phase space

• There exists phase space observables, and every phase space observable is of the form

$$\mathsf{G}(X \times Y) = \frac{1}{2\pi} \iint_{X \times Y} U(a) V(p) S V(p)^* U(a)^* \, \mathrm{d}a \, \mathrm{d}p$$

with $\boldsymbol{\mathcal{S}}\in\mathcal{S}(\mathcal{H})$

• The margins of G

$$\begin{array}{lll} \mathsf{E}(X) & := & \mathsf{G}(X \times \mathbb{P}) \\ \mathsf{F}(Y) & := & \mathsf{G}(\mathbb{R} \times Y) \end{array}$$

are position and momentum observables, respectively. Their associated probability densities ρ , ν are absolutely continuous wrt the Lebesgue measure and *Fourier-related*

Measurements in Quantum Mechanics Structure theorems References General structure theorems Explicit structure theorems and examples

Phase space

• There exists phase space observables, and every phase space observable is of the form

$$\mathsf{G}(X \times Y) = \frac{1}{2\pi} \iint_{X \times Y} U(a) V(p) S V(p)^* U(a)^* \, \mathrm{d}a \, \mathrm{d}p$$

with $oldsymbol{\mathcal{S}}\in\mathcal{S}(\mathcal{H})$

• The margins of G

$$\begin{array}{lll} \mathsf{E}(X) & := & \mathsf{G}(X \times \mathbb{P}) \\ \mathsf{F}(Y) & := & \mathsf{G}(\mathbb{R} \times Y) \end{array}$$

are position and momentum observables, respectively. Their associated probability densities ρ , ν are absolutely continuous wrt the Lebesgue measure and *Fourier-related*

(4月) トイヨト イヨト

Coexistence

Position and momentum observables E_{ρ} , F_{ν} are *coexistent* if they are margins of a single observable G on $\mathbb{R} \times \mathbb{P}$

Theorem

 E_ρ and F_ν are coexistent iff they are margins of a phase space observable.

Consequences

If E_ρ and F_ν are coexistent, then ρ, ν are absolutely continuous wrt the Lebesgue measure and Fourier-related
 Var (ρ_S^{E_ρ}) Var (ρ_S^{F_ν}) ≥ 1 for all S ∈ S(H)

Coexistence

Position and momentum observables E_{ρ} , F_{ν} are *coexistent* if they are margins of a single observable G on $\mathbb{R} \times \mathbb{P}$

Theorem

 E_ρ and F_ν are coexistent iff they are margins of a phase space observable.

Consequences

If E_ρ and F_ν are coexistent, then ρ, ν are absolutely continuous wrt the Lebesgue measure and Fourier-related
 Var (ρ_S^{E_ρ}) Var (ρ_S^{E_ν}) ≥ 1 for all S ∈ S(H)

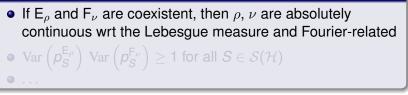
Coexistence

Position and momentum observables E_{ρ} , F_{ν} are *coexistent* if they are margins of a single observable G on $\mathbb{R} \times \mathbb{P}$

Theorem

 E_ρ and F_ν are coexistent iff they are margins of a phase space observable.

Consequences



・ロト ・ 同ト ・ ヨト ・ ヨト

Coexistence

Position and momentum observables E_{ρ} , F_{ν} are *coexistent* if they are margins of a single observable G on $\mathbb{R} \times \mathbb{P}$

Theorem

 E_ρ and F_ν are coexistent iff they are margins of a phase space observable.

Consequences

If E_ρ and F_ν are coexistent, then ρ, ν are absolutely continuous wrt the Lebesgue measure and Fourier-related
 Var (p^{E_ρ}_S) Var (p^{F_ν}_S) ≥ 1 for all S ∈ S(H)

・ロト ・ 理 ト ・ ヨ ト ・

Coexistence

Position and momentum observables E_{ρ} , F_{ν} are *coexistent* if they are margins of a single observable G on $\mathbb{R} \times \mathbb{P}$

Theorem

 E_ρ and F_ν are coexistent iff they are margins of a phase space observable.

Consequences

If E_ρ and F_ν are coexistent, then ρ, ν are absolutely continuous wrt the Lebesgue measure and Fourier-related
 Var (ρ_S^{E_ρ}) Var (ρ_S^{F_ν}) ≥ 1 for all S ∈ S(H)
 ...

・ロト ・ 理 ト ・ ヨ ト ・

Position and momentum instruments

Definition

An instrument $\mathcal{I}: \mathcal{B}(\mathbb{R}) \to \mathcal{L}(\mathcal{T}(\mathcal{H}))$ is a *position instrument* if

$$U(a)\mathcal{I}_X(U(a)^*TU(a))U(a)^* = \mathcal{I}_{X+a}(T)$$

$$V(p)\mathcal{I}_X(V(p)^*TV(p))V(p)^* = \mathcal{I}_X(T)$$

A similar definition holds for *momentum instruments*. In particular, $\mathcal{J} : \mathcal{B}(\mathbb{P}) \to \mathcal{L}(\mathcal{T}(\mathcal{H}))$ is a momentum instrument iff

$$\mathcal{I}_X(T) = \mathcal{F}\mathcal{J}_X(\mathcal{F}^{-1}T\mathcal{F})\mathcal{F}^{-1}$$

defines a position instrument \mathcal{I} .

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem

There is a one-to-one correspondence between position instruments and couples (μ, K) , with

- μ probability measure on $\mathbb R$
- $K : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{C}$ positive semidefinite kernel satisfying

$$\int K(x,h;x,h)\,dx\,d\mu(h)=1$$

If (μ, K) is as above, the corresponding position instrument is $[\mathcal{I}_X(T)](x, y) = \int 1_X(z)T(x+h, y+h)K(z-y, h; z-x, h) dz d\mu(h)$

Theorem

There is a one-to-one correspondence between position instruments and couples (μ, K) , with

- μ probability measure on $\mathbb R$
- $K : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{C}$ positive semidefinite kernel satisfying $\int K(x, h; x, h) dx d\mu(h) = 1$

If (μ, K) is as above, the corresponding position instrument is $[\mathcal{I}_X(T)](x, y) = \int 1_X(z)T(x+h, y+h)K(z-y, h; z-x, h) dz d\mu(h)$

Theorem

There is a one-to-one correspondence between position instruments and couples (μ, K) , with

- μ probability measure on $\mathbb R$
- $\bullet~ K: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{C}$ positive semidefinite kernel satisfying

$$\int K(x,h;x,h)\,dx\,d\mu(h)=1$$

If (μ, K) is as above, the corresponding position instrument is $[\mathcal{I}_X(T)](x, y) = \int 1_X(z)T(x+h, y+h)K(z-y, h; z-x, h) dz d\mu(h)$

Theorem

There is a one-to-one correspondence between position instruments and couples (μ, K) , with

i, j=1

A map $K : X \times X \to \mathbb{C}$ is positive semidefinite if for all $N \in \mathbb{Z}_+, \{x_i\}_{i=1,2...N} \subset X, \{c_i\}_{i=1,2...N} \subset \mathbb{C}$

$$\sum_{i=1}^{N} c_i \overline{c_i} K(x_i, x_i) \geq 0$$

If $(\mu,$

$$[\mathcal{I}_{X}(T)](x,y) = \int 1_{X}(z) I(x+n,y+n)K(z-y,n;z-x,n) \, dz \, d\mu(h)]$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Structure theorem for position instruments

Theorem

There is a one-to-one correspondence between position instruments and couples (μ, K) , with

- μ probability measure on $\mathbb R$
- $K : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{C}$ positive semidefinite kernel satisfying

$$\int K(x,h;x,h)\,dx\,d\mu(h)=1$$

If (μ, K) is as above, the corresponding position instrument is $[\mathcal{I}_X(T)](x, y) = \int \mathbf{1}_X(z)T(x+h, y+h)K(z-y, h; z-x, h) dz d\mu(h)$

Structure theorem for position instruments

Theorem

There is a one-to-one correspondence between position instruments and couples (μ, K) , with

- μ probability measure on $\mathbb R$
- Remark

Trace class operators have been identified with their associated kernels, i. e.

If
$$(\mu, \qquad Tf(x) = \int T(x, y)f(y) \, \mathrm{d}y \qquad \forall f \in L^2(\mathbb{R})$$

$$[\mathcal{I}_X(T)](x,y) = \int \mathbf{1}_X(z)T(x+h,y+h)K(z-y,h;z-x,h)\,dz\,d\mu(h)$$

is

イロト イポト イヨト イヨト

G abelian, H generic, U generic

• Dual group:

$$\hat{\pmb{G}} = \{\gamma \in \pmb{\mathcal{C}}(\pmb{G}) \mid \gamma(\pmb{g}\pmb{h}) = \gamma(\pmb{g})\gamma(\pmb{h}) \; \forall \pmb{g}, \pmb{h} \in \pmb{G}\}$$

• Annihilator of *H* in \hat{G} :

$$H^{\perp} = \left\{ \gamma \in \hat{G} \mid \gamma(h) = 1 \ \forall h \in H \right\}$$

• Quotient map:

$$p: \hat{G} \to \hat{G}/H^{\perp}$$

We have identifications

$$\hat{H} = \hat{G}/H^{\perp}$$
 (canonical)
 $\hat{G} = \hat{G}/H^{\perp} imes H^{\perp}$ (depending on a cross-section)

ヘロア 人間 アメヨア 人口 ア

э

• Dual group:

$$\hat{\pmb{G}} = \{\gamma \in \pmb{\mathcal{C}}(\pmb{G}) \mid \gamma(\pmb{g}\pmb{h}) = \gamma(\pmb{g})\gamma(\pmb{h}) \; \forall \pmb{g}, \pmb{h} \in \pmb{G}\}$$

• Annihilator of H in \hat{G} :

$$\mathcal{H}^{\perp} = \left\{ \gamma \in \hat{\mathcal{G}} \mid \gamma(\mathbf{h}) = \mathbf{1} \; \forall \mathbf{h} \in \mathcal{H}
ight\}$$

• Quotient map:

$$p: \hat{G}
ightarrow \hat{G}/H^{\perp}$$

We have identifications

$$\hat{H} = \hat{G}/H^{\perp}$$
 (canonical)
 $\hat{G} = \hat{G}/H^{\perp} imes H^{\perp}$ (depending on a cross-section)

ヘロア 人間 アメヨア 人口 ア

э

• Dual group:

$$\hat{\pmb{G}} = \{\gamma \in \pmb{\mathcal{C}}(\pmb{G}) \mid \gamma(\pmb{g}\pmb{h}) = \gamma(\pmb{g})\gamma(\pmb{h}) \; \forall \pmb{g}, \pmb{h} \in \pmb{G}\}$$

• Annihilator of H in \hat{G} :

$$H^{\perp} = \left\{ \gamma \in \hat{G} \mid \gamma(h) = 1 \; \forall h \in H
ight\}$$

• Quotient map:

$$p: \hat{G}
ightarrow \hat{G} / H^{\perp}$$

We have identifications

 $\hat{H} = \hat{G}/H^{\perp}$ (canonical) $\hat{G} = \hat{G}/H^{\perp} imes H^{\perp}$ (depending on a cross-section)

• Dual group:

$$\hat{\pmb{G}} = \{\gamma \in \pmb{\mathcal{C}}(\pmb{G}) \mid \gamma(\pmb{g}\pmb{h}) = \gamma(\pmb{g})\gamma(\pmb{h}) \; \forall \pmb{g}, \pmb{h} \in \pmb{G}\}$$

• Annihilator of H in \hat{G} :

$$\mathcal{H}^{\perp} = \left\{ \gamma \in \hat{\mathcal{G}} \mid \gamma(\mathbf{h}) = 1 \; \forall \mathbf{h} \in \mathcal{H}
ight\}$$

• Quotient map:

$${\pmb
ho}: \hat{\pmb G} o \hat{\pmb G} / \pmb H^\perp$$

We have identifications

$$\hat{H} = \hat{G}/H^{\perp}$$
 (canonical)
 $\hat{G} = \hat{G}/H^{\perp} \times H^{\perp}$ (depending on a cross-section)

イロト イポト イヨト イヨト

Theorem

Let U be the diagonal representation in $\mathcal{H}=\mathsf{L}^{\mathsf{2}}\left(\hat{\mathsf{G}},
u;\mathcal{K}
ight).$

There exists U-covariant POVMs on G/H iff $\nu = \alpha p(\nu) \otimes \mu_{H^{\perp}}$. In this case, every U-covariant POVM on G/H has the form

$$\langle E(X)\psi, \phi \rangle = \int_{\widehat{G}} d\nu(\gamma) \int_{H^{\perp}} d\mu_{H^{\perp}}(\chi) \int_{X} d\mu_{G/H}(gH) \sqrt{\alpha(\gamma)\alpha(\gamma\chi^{-1})} \, \chi(gH) \left\langle W(\gamma\chi^{-1})\psi(\gamma\chi^{-1}), W(\gamma)\phi(\gamma\chi^{-1}) \right\rangle$$

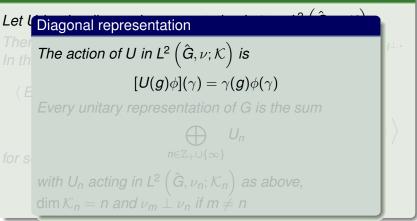
for some choice of a map

$$\hat{G}
i \gamma \mapsto W_{\gamma} \in \mathcal{L}(\mathcal{K}; \mathcal{K}_{\infty}) \qquad W_{\gamma}^* W_{\gamma} = I_{\mathcal{K}}$$

イロト イポト イヨト イヨト

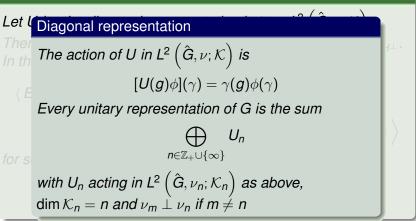
G abelian, *H* generic, *U* generic

Theorem



G abelian, *H* generic, *U* generic

Theorem



Theorem

Let U be the diagonal representation in $\mathcal{H} = L^2(\hat{G}, \nu; \mathcal{K})$. There exists U-covariant POVMs on G/H iff $\nu = \alpha p(\nu) \otimes \mu_{H^{\perp}}$. In this case, every U-covariant POVM on G/H has the form $\langle E(X)\psi, \phi \rangle = \int_{\widehat{G}} d\nu(\gamma) \int_{H^{\perp}} d\mu_{H^{\perp}}(\chi) \int_{X} d\mu_{G/H}(gH)$ $\sqrt{\alpha(\gamma)\alpha(\gamma\chi^{-1})} \chi(gH) \langle W(\gamma\chi^{-1})\psi(\gamma\chi^{-1}), W(\gamma)\phi(\gamma) \rangle$ for some choice of a map

$$\hat{G}
i \gamma \mapsto W_{\gamma} \in \mathcal{L}(\mathcal{K}; \mathcal{K}_{\infty}) \qquad W_{\gamma}^* W_{\gamma} = I_{\mathcal{K}}$$

Theorem

Let U be the diagonal representation in $\mathcal{H} = L^2(\hat{G}, \nu; \mathcal{K})$. There exists U-covariant POVMs on G/H iff $\nu = \alpha p(\nu) \otimes \mu_{H^{\perp}}$. In this case, every U-covariant POVM on G/H has the form

$$\langle \mathbf{E}(\mathbf{X})\psi, \phi \rangle = \int_{\widehat{\mathbf{G}}} d\nu(\gamma) \int_{H^{\perp}} d\mu_{H^{\perp}}(\chi) \int_{\mathbf{X}} d\mu_{G/H}(\mathbf{g}H) \sqrt{\alpha(\gamma)\alpha(\gamma\chi^{-1})} \chi(\mathbf{g}H) \left\langle \mathbf{W}(\gamma\chi^{-1})\psi(\gamma\chi^{-1}), \mathbf{W}(\gamma)\phi(\gamma) \right\rangle$$

for some choice of a map

$$\hat{\boldsymbol{G}} \ni \gamma \mapsto \boldsymbol{W}_{\gamma} \in \mathcal{L}(\mathcal{K}; \mathcal{K}_{\infty}) \qquad \boldsymbol{W}_{\gamma}^* \boldsymbol{W}_{\gamma} = \boldsymbol{I}_{\mathcal{K}}$$

General structure theorems Explicit structure theorems and examples

Example: phase observables

- $G = \mathbb{T}, H = \{1\}$
- *H* = *L*² (ℕ, #)
- $U(z)\delta_n = z^n \delta_n$

イロト 不得 トイヨト イヨト

э

Example: phase observables

- *G* = T, *H* = {1}
- $\mathcal{H} = L^2(\mathbb{N}, \#)$
- $U(z)\delta_n = z^n \delta_n$

In the previous theorem

•
$$\hat{G} = H^{\perp} = \mathbb{Z}, \ G/H = G$$

- μ_{H⊥} = # on ℤ, ν = # restricted to ℕ, μ_{G/H} is the Haar measure of T
- $\mathcal{K} = \mathbb{C}$, and we can choose $\mathcal{K}_{\infty} = \mathcal{H}$

•
$$W_n = \eta_n \in \mathcal{H}$$
, with $\|\eta_n\| = 1$

Example: phase observables

- $G = \mathbb{T}, H = \{1\}$
- $\mathcal{H} = L^2(\mathbb{N}, \#)$
- $U(z)\delta_n = z^n \delta_n$

In the previous theorem

• $\hat{G} = H^{\perp} = \mathbb{Z}, \ G/H = G$

- μ_{H[⊥]} = # on ℤ, ν = # restricted to ℕ, μ_{G/H} is the Haar measure of T
- $\mathcal{K} = \mathbb{C}$, and we can choose $\mathcal{K}_{\infty} = \mathcal{H}$

•
$$W_n = \eta_n \in \mathcal{H}$$
, with $\|\eta_n\| = 1$

Example: phase observables

- $G = \mathbb{T}, H = \{1\}$
- $\mathcal{H} = L^2(\mathbb{N}, \#)$
- $U(z)\delta_n = z^n \delta_n$

In the previous theorem

• $\hat{G} = H^{\perp} = \mathbb{Z}, \ G/H = G$

- µ_{H[⊥]} = # on ℤ, ν = # restricted to ℕ, μ_{G/H} is the Haar measure of 𝔅
- $\mathcal{K} = \mathbb{C}$, and we can choose $\mathcal{K}_{\infty} = \mathcal{H}$
- $W_n = \eta_n \in \mathcal{H}$, with $\|\eta_n\| = 1$

Example: phase observables

- $G = \mathbb{T}, H = \{1\}$
- $\mathcal{H} = L^2(\mathbb{N}, \#)$
- $U(z)\delta_n = z^n \delta_n$

In the previous theorem

- $\hat{G} = H^{\perp} = \mathbb{Z}, \ G/H = G$
- μ_{H[⊥]} = # on ℤ, ν = # restricted to ℕ, μ_{G/H} is the Haar measure of 𝔅
- $\mathcal{K} = \mathbb{C}$, and we can choose $\mathcal{K}_{\infty} = \mathcal{H}$
- $W_n = \eta_n \in \mathcal{H}$, with $\|\eta_n\| = 1$

Example: phase observables

- $G = \mathbb{T}, H = \{1\}$
- $\mathcal{H} = L^2(\mathbb{N}, \#)$
- $U(z)\delta_n = z^n \delta_n$

In the previous theorem

• $\hat{G} = H^{\perp} = \mathbb{Z}, \ G/H = G$

- μ_{H[⊥]} = # on ℤ, ν = # restricted to ℕ, μ_{G/H} is the Haar measure of 𝔅
- $\mathcal{K} = \mathbb{C}$, and we can choose $\mathcal{K}_{\infty} = \mathcal{H}$

• $W_n = \eta_n \in \mathcal{H}$, with $\|\eta_n\| = 1$

Example: phase observables

- *G* = T, *H* = {1}
- $\mathcal{H} = L^2(\mathbb{N}, \#)$
- $U(z)\delta_n = z^n \delta_n$

In the previous theorem

•
$$\hat{G} = H^{\perp} = \mathbb{Z}, \ G/H = G$$

- μ_{H⊥} = # on ℤ, ν = # restricted to ℕ, μ_{G/H} is the Haar measure of T
- $\mathcal{K} = \mathbb{C}$, and we can choose $\mathcal{K}_{\infty} = \mathcal{H}$

•
$$W_n = \eta_n \in \mathcal{H}$$
, with $\|\eta_n\| = 1$

Example: phase observables

- $G = \mathbb{T}, H = \{1\}$
- $\mathcal{H} = L^2(\mathbb{N}, \#)$
- $U(z)\delta_n = z^n \delta_n$

Every phase observable is of the form

$$\mathsf{E}(X) = \sum_{m,n\in\mathbb{N}} c_{mn} \int_X z^{m-n} \, \mathrm{d} z \, |m\rangle \, \langle n| \qquad \forall X \in \mathcal{B}(\mathbb{T})$$

where the matrix $\{c_{mn} = \langle \eta_n, \eta_m \rangle\}_{m,n \in \mathbb{N}}$ is positive semidefinite and $c_{nn} = 1$.

In particular, there is no sharp phase observable.

Example: phase observables

- $G = \mathbb{T}, H = \{1\}$
- $\mathcal{H} = L^2(\mathbb{N}, \#)$
- $U(z)\delta_n = z^n \delta_n$

Every phase observable is of the form

$$\mathsf{E}(X) = \sum_{m,n\in\mathbb{N}} c_{mn} \int_X z^{m-n} \, \mathrm{d} z \, |m\rangle \, \langle n| \qquad \forall X \in \mathcal{B}(\mathbb{T})$$

where the matrix $\{c_{mn} = \langle \eta_n, \eta_m \rangle\}_{m,n \in \mathbb{N}}$ is positive semidefinite and $c_{nn} = 1$. In particular, *there is no sharp phase observable*.

General structure theorems Explicit structure theorems and examples

G compact, H compact, U generic

$$egin{aligned} \mathcal{H} &= igoplus_{\pi \in \hat{G}} \mathcal{H}_{\pi} \otimes \mathcal{K}_{\pi} \ U &= igoplus_{\pi \in \hat{G}} \pi \otimes I_{\mathcal{K}_{\pi}} \end{aligned}$$

where \hat{G} is the set of irreducible unitary representations (π, \mathcal{H}_{π}) of *G*

・ロト ・ 同ト ・ ヨト ・ ヨト

30/37

General structure theorems Explicit structure theorems and examples

G compact, H compact, U generic

$$egin{aligned} \mathcal{H} &= igoplus_{\pi \in \hat{G}} \mathcal{H}_{\pi} \otimes \mathcal{K}_{\pi} \ U &= igoplus_{\pi \in \hat{G}} \pi \otimes I_{\mathcal{K}_{\pi}} \end{aligned}$$

Let \mathcal{C} be the convex set of maps $K : \hat{G} \times \hat{G} \rightarrow \mathcal{L}(\mathcal{H})$ s. t.

1
$$K(\rho,\pi)U(h) = U(h)K(\rho,\pi)$$
 for all $h \in H$

2 $\sum_{\rho,\pi} \langle K(\rho,\pi) v^{\pi}, v^{\rho} \rangle \ge 0$ for all sequences $\{v^{\pi}\}_{\pi \in \hat{G}}$ in \mathcal{H} with only a finite number of nonzero elements

General structure theorems Explicit structure theorems and examples

G compact, H compact, U generic

$$egin{aligned} \mathcal{H} &= igoplus_{\pi\in\hat{G}}\mathcal{H}_{\pi}\otimes\mathcal{K}_{\pi} \ \mathcal{U} &= igoplus_{\pi\in\hat{G}}\pi\otimes\mathcal{I}_{\mathcal{K}_{\pi}} \end{aligned}$$

Let \mathcal{C} be the convex set of maps $K : \hat{G} \times \hat{G} \rightarrow \mathcal{L}(\mathcal{H})$ s. t.

- $K(\rho, \pi)U(h) = U(h)K(\rho, \pi)$ for all $h \in H$
- 2 $\sum_{\rho,\pi} \langle K(\rho,\pi)v^{\pi}, v^{\rho} \rangle \ge 0$ for all sequences $\{v^{\pi}\}_{\pi \in \hat{G}}$ in \mathcal{H} with only a finite number of nonzero elements

General structure theorems Explicit structure theorems and examples

G compact, H compact, U generic

$$\mathcal{H} = igoplus_{\pi\in\hat{G}}\mathcal{H}_{\pi}\otimes\mathcal{K}_{\pi} \ \mathcal{U} = igoplus_{\pi\in\hat{G}}\pi\otimes \mathit{I}_{\mathcal{K}_{\pi}}$$

Let \mathcal{C} be the convex set of maps $K : \hat{G} \times \hat{G} \rightarrow \mathcal{L}(\mathcal{H})$ s. t.

- $K(\rho,\pi)U(h) = U(h)K(\rho,\pi) \text{ for all } h \in H$
- 2 $\sum_{\rho,\pi} \langle K(\rho,\pi) v^{\pi}, v^{\rho} \rangle \ge 0$ for all sequences $\{v^{\pi}\}_{\pi \in \hat{G}}$ in \mathcal{H} with only a finite number of nonzero elements

General structure theorems Explicit structure theorems and examples

G compact, H compact, U generic

$$egin{aligned} \mathcal{H} &= igoplus_{\pi\in\hat{G}}\mathcal{H}_{\pi}\otimes\mathcal{K}_{\pi} \ \mathcal{U} &= igoplus_{\pi\in\hat{G}}\pi\otimes\mathcal{I}_{\mathcal{K}_{\pi}} \end{aligned}$$

Let \mathcal{C} be the convex set of maps $K : \hat{G} \times \hat{G} \rightarrow \mathcal{L}(\mathcal{H})$ s. t.

- $K(\rho,\pi)U(h) = U(h)K(\rho,\pi) \text{ for all } h \in H$
- 2 $\sum_{\rho,\pi} \langle K(\rho,\pi) v^{\pi}, v^{\rho} \rangle \ge 0$ for all sequences $\{v^{\pi}\}_{\pi \in \widehat{G}}$ in \mathcal{H} with only a finite number of nonzero elements

General structure theorems Explicit structure theorems and examples

G compact, H compact, U generic

$$egin{aligned} \mathcal{H} &= igoplus_{\pi \in \hat{G}} \mathcal{H}_{\pi} \otimes \mathcal{K}_{\pi} \ U &= igoplus_{\pi \in \hat{G}} \pi \otimes I_{\mathcal{K}_{\pi}} \end{aligned}$$

Let \mathcal{C} be the convex set of maps $K : \hat{G} \times \hat{G} \rightarrow \mathcal{L}(\mathcal{H})$ s. t.

1
$$K(\rho,\pi)U(h) = U(h)K(\rho,\pi)$$
 for all $h \in H$

2 $\sum_{\rho,\pi} \langle K(\rho,\pi) v^{\pi}, v^{\rho} \rangle \ge 0$ for all sequences $\{v^{\pi}\}_{\pi \in \hat{G}}$ in \mathcal{H} with only a finite number of nonzero elements

G compact, H compact, U generic

Theorem

There is a one-to-one convex correspondence betwteen C and the set of U-covariant POVMs on G/H, given by

$$\langle \mathsf{E}(X) \mathsf{v}_{\pi} , \mathsf{w}_{
ho}
angle = \int_{X} \langle \mathsf{K}(
ho, \pi) \mathsf{U}(g)^* \mathsf{v}_{\pi} , \mathsf{U}(g)^* \mathsf{w}_{
ho}
angle d\mu_{G/H}(gH)$$

for all $\mathsf{v}_{\pi} \in \mathcal{H}_{\pi} \otimes \mathcal{K}_{\pi}$, $\mathsf{w}_{
ho} \in \mathcal{H}_{
ho} \otimes \mathcal{K}_{
ho}$

ヘロア 人間 アメヨア 人口 ア

- The POVMs on a set Ω form a convex set P(Ω), which is compact in a suitable weak-* topology
- If E ∉ ext P(Ω), then E = p₁E₁ + p₂E₂ with p₁ + p₂ = 1,
 i. e. E comes from the random choice between two different observables
- Every $E \in \mathcal{P}(\Omega)$ can be approximated by the convex sum of elements in ext $\mathcal{P}(\Omega)$
- The elements in ext P(Ω) optimize convex cost functions in quantum estimation theory

- The POVMs on a set Ω form a convex set P(Ω), which is compact in a suitable weak-* topology
- If E ∉ ext P(Ω), then E = p₁E₁ + p₂E₂ with p₁ + p₂ = 1,
 i. e. E comes from the random choice between two different observables
- Every $E \in \mathcal{P}(\Omega)$ can be approximated by the convex sum of elements in ext $\mathcal{P}(\Omega)$
- The elements in ext P(Ω) optimize convex cost functions in quantum estimation theory

- The POVMs on a set Ω form a convex set P(Ω), which is compact in a suitable weak-* topology
- If E ∉ ext P(Ω), then E = p₁E₁ + p₂E₂ with p₁ + p₂ = 1,
 i. e. E comes from the random choice between two different observables
- Every $E \in \mathcal{P}(\Omega)$ can be approximated by the convex sum of elements in $\operatorname{ext} \mathcal{P}(\Omega)$
- The elements in ext P(Ω) optimize convex cost functions in quantum estimation theory

- The POVMs on a set Ω form a convex set P(Ω), which is compact in a suitable weak-* topology
- If E ∉ ext P(Ω), then E = p₁E₁ + p₂E₂ with p₁ + p₂ = 1,
 i. e. E comes from the random choice between two different observables
- Every E ∈ P(Ω) can be approximated by the convex sum of elements in ext P(Ω)
- The elements in ext P(Ω) optimize convex cost functions in quantum estimation theory

An application: extremal POVMs

For $K \in C$, let \mathcal{H}_K be the RKHS associated to K.

 $\mathcal{H}_{\mathcal{K}}$ carries an unitary representation \tilde{U} of H, given by $[\tilde{U}(h)f](\pi) = U(h)f(\pi)$

$$\begin{aligned} \mathcal{T}_U &:= \{ T \in \mathcal{T}(\mathcal{H}) \mid TU(g) = U(g)T \; \forall g \in G \} \\ \mathcal{T}_{\tilde{U}} &:= \left\{ T \in \mathcal{T}(\mathcal{H}_K) \mid T\tilde{U}(h) = \tilde{U}(h)T \; \forall h \in H \right\} \\ \tilde{\mathcal{T}}_U &:= \overline{\operatorname{span}} \; \left\{ \operatorname{ev}_\pi^* T \operatorname{ev}_\pi \mid T \in \mathcal{T}_U, \; \pi \in \hat{G} \right\} \end{aligned}$$

An application: extremal POVMs

For $K \in C$, let \mathcal{H}_K be the RKHS associated to K.

 $\mathcal{H}_{\mathcal{K}} \in \mathbb{R} \text{eproducing kernel Hilbert space associated to } \mathcal{K}$ $\bullet \ \mathcal{H}_{\mathcal{K}}^{0} = \operatorname{span} \left\{ \mathcal{K}(\cdot, \pi) \mathcal{V} \mid \pi \in \hat{\mathcal{G}}, \ \mathcal{V} \in \mathcal{H} \right\}$ $\bullet \ \langle \cdot, \cdot \rangle_{\mathcal{K}} : \mathcal{H}_{\mathcal{K}}^{0} \times \mathcal{H}_{\mathcal{K}}^{0} \to \mathbb{C} \text{ given by}$ $\langle \mathcal{K}(\cdot, \pi) \mathcal{V}, \ \mathcal{K}(\cdot, \rho) \mathcal{W} \rangle_{\mathcal{K}} = \langle \mathcal{K}(\rho, \pi) \mathcal{V}, \ \mathcal{W} \rangle$

Then the completion \mathcal{H}_K of \mathcal{H}_K^0 is a Hilbert space of \mathcal{H} -valued functions in which the evaluation maps ev_π are continuous

An application: extremal POVMs

For $K \in C$, let \mathcal{H}_K be the RKHS associated to K.

 $\mathcal{H}_{\mathcal{K}} \stackrel{\mathsf{Reproducing kernel Hilbert space associated to } \mathcal{K}$ • $\mathcal{H}_{\mathcal{K}}^{0} = \operatorname{span} \left\{ \mathcal{K}(\cdot, \pi) \mathcal{V} \mid \pi \in \hat{\mathcal{G}}, \ \mathcal{V} \in \mathcal{H} \right\}$ • $\langle \cdot, \cdot \rangle_{\mathcal{K}} : \mathcal{H}_{\mathcal{K}}^{0} \times \mathcal{H}_{\mathcal{K}}^{0} \to \mathbb{C} \text{ given by}$ $\langle \mathcal{K}(\cdot, \pi) \mathcal{V}, \ \mathcal{K}(\cdot, \rho) \mathcal{W} \rangle_{\mathcal{K}} = \langle \mathcal{K}(\rho, \pi) \mathcal{V}, \ \mathcal{W} \rangle$

Then the completion \mathcal{H}_K of \mathcal{H}_K^0 is a Hilbert space of \mathcal{H} -valued functions in which the evaluation maps ev_π are continuous

An application: extremal POVMs

For $K \in C$, let \mathcal{H}_K be the RKHS associated to K.

Producing kernel Hilbert space associated to *K* • $\mathcal{H}_{K}^{0} = \operatorname{span} \left\{ K(\cdot, \pi) \mathbf{v} \mid \pi \in \hat{G}, \ \mathbf{v} \in \mathcal{H} \right\}$ • $\langle \cdot, \cdot \rangle_{K} : \mathcal{H}_{K}^{0} \times \mathcal{H}_{K}^{0} \to \mathbb{C}$ given by $\langle K(\cdot, \pi) \mathbf{v}, \ K(\cdot, \rho) \mathbf{w} \rangle_{K} = \langle K(\rho, \pi) \mathbf{v}, \ \mathbf{w} \rangle$

Then the completion \mathcal{H}_K of \mathcal{H}_K^0 is a Hilbert space of \mathcal{H} -valued functions in which the evaluation maps ev_π are continuous

An application: extremal POVMs

For $K \in C$, let \mathcal{H}_K be the RKHS associated to K.

$\mathcal{H}_{\mathcal{K}}$ carries an unitary representation \tilde{U} of H, given by $[\tilde{U}(h)f](\pi) = U(h)f(\pi)$

$$\mathcal{T}_U := \{ T \in \mathcal{T}(\mathcal{H}) \mid TU(g) = U(g)T \ \forall g \in G \}$$

 $\mathcal{T}_{\tilde{U}} := \left\{ T \in \mathcal{T}(\mathcal{H}_K) \mid T\tilde{U}(h) = \tilde{U}(h)T \ \forall h \in H \right\}$
 $\tilde{\mathcal{T}}_U := \overline{\operatorname{span}} \ \left\{ \operatorname{ev}_{\pi}^* T \operatorname{ev}_{\pi} \mid T \in \mathcal{T}_U, \ \pi \in \hat{G} \right\}$

イロト イポト イヨト イヨト

An application: extremal POVMs

For $K \in C$, let \mathcal{H}_K be the RKHS associated to K.

 $\mathcal{H}_{\mathcal{K}}$ carries an unitary representation \tilde{U} of H, given by $[\tilde{U}(h)f](\pi) = U(h)f(\pi)$

$$\mathcal{T}_U := \{ T \in \mathcal{T}(\mathcal{H}) \mid TU(g) = U(g)T \ \forall g \in G \}$$

 $\mathcal{T}_{\tilde{U}} := \left\{ T \in \mathcal{T}(\mathcal{H}_K) \mid T\tilde{U}(h) = \tilde{U}(h)T \ \forall h \in H
ight\}$
 $\tilde{\mathcal{T}}_U := \overline{\operatorname{span}} \ \left\{ \operatorname{ev}_\pi^* T \operatorname{ev}_\pi \mid T \in \mathcal{T}_U, \ \pi \in \hat{G}
ight\}$

イロト イポト イヨト イヨト

An application: extremal POVMs

Theorem

The POVM associated to K is extremal in the set of U-covariant POVMs on G/H iff $\tilde{T}_U = T_{\tilde{U}}$.

Example: extremal phase observables

Let E be a phase observable with associated matrix $\{c_{mn}\}_{m,n\in\mathbb{N}}$. Let

- $\{\eta_n\}_{n\in\mathbb{N}}$ be vectors in \mathcal{H} such that $c_{mn} = \langle \eta_m, \eta_n \rangle$
- \mathcal{H}_0 be their closed linear span.

Then E is extremal in the convex set of phase observables iff

 $\mathcal{T}(\mathcal{H}_0) = \overline{\operatorname{span}} \{ |\eta_n\rangle \langle \eta_n| \mid n \in \mathbb{N} \}$

An application: extremal POVMs

Theorem

The POVM associated to K is extremal in the set of U-covariant POVMs on G/H iff $\tilde{T}_U = T_{\tilde{U}}$.

Example: extremal phase observables

Let E be a phase observable with associated matrix $\{c_{mn}\}_{m,n\in\mathbb{N}}$. Let

- $\{\eta_n\}_{n\in\mathbb{N}}$ be vectors in \mathcal{H} such that $c_{mn} = \langle \eta_m, \eta_n \rangle$
- \mathcal{H}_0 be their closed linear span.

Then E is extremal in the convex set of phase observables iff

 $\mathcal{T}(\mathcal{H}_0) = \overline{\text{span}} \{ |\eta_n\rangle \langle \eta_n| \mid n \in \mathbb{N} \}$

Indice

Measurements in Quantum Mechanics

- Observables and instruments
- Symmetry groups and covariant measurements
- Examples

2 Structure theorems

- General structure theorems
- Explicit structure theorems and examples

3 References

→ E → < E →</p>

< 🗇 🕨

- C. Carmeli, T. Heinonen, A. Toigo, Covariant instruments, accettato per la pubblicazione su J. Func. Anal. (2009)
- C. Carmeli, T. Heinonen, J. P. Pellonpää, A. Toigo, Extremal covariant positive operator valued measures: the case of a compact symmetry group, J. Math. Phys. 49 No. 6 (2008) 063504
- C. Carmeli, T. Heinonen, A. Toigo, On the coexistence of position and momentum observables, J. Phys. A 38 (2005) 5253-5266
- C. Carmeli, T. Heinonen, A. Toigo, Position and momentum observables on ℝ and on ℝ³, J. Math. Phys. 45 (2004) 2526-2539

イロト イポト イヨト イヨト

- G. Cassinelli, E. De Vito, A. Toigo, Positive operator valued measures covariant with respect to an Abelian group, J. Math. Phys. 45 (2004) 418-433
- G. Cassinelli, E. De Vito, A. Toigo, Positive operator valued measures covariant with respect to an irreducible representation, J. Math. Phys. 44 (2003) 4768-4775
- A. Toigo, Positive operator valued measures, generalised imprimitivity theorem and their applications, Ph. D. thesis (2005)

イロト イヨト イヨト