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Mathematical setting

H = Hilbert space of the quantum system
L(H) = bounded operators on H
U(H) = unitary operators on H
T (H) = trace class operators
S(H) = {S ∈ T (H) | S ≥ 0, tr [S] = 1} = state space
L(T (H)) = bounded operators in T (H)

(Ω,A) = measurable outcome space
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Observables
Definition
An observable (or positive operator valued measure, or POVM)
is a mapping E : A → L(H) such that

1 E(X ) ≥ 0 for all X ∈ A
2 E(Ω) = 1
3 WOT−

∑
i E(Xi) = E(∪iXi) if {Xi}i∈N is a sequence such

that Xi ∩ Xj = ∅ for i 6= j .

The probability measure pE
S on Ω

pE
S(X ) = tr [SE(X )]

describes the statistics of a measurement of E performed on S.

Alessandro Toigo Covariant POVMs and instruments 5/37



Measurements in Quantum Mechanics
Structure theorems

References

Observables and instruments
Symmetry groups and covariant measurements
Examples

Observables
Definition
An observable (or positive operator valued measure, or POVM)
is a mapping E : A → L(H) such that

1 E(X ) ≥ 0 for all X ∈ A
2 E(Ω) = 1
3 WOT−

∑
i E(Xi) = E(∪iXi) if {Xi}i∈N is a sequence such

that Xi ∩ Xj = ∅ for i 6= j .

The probability measure pE
S on Ω

pE
S(X ) = tr [SE(X )]

describes the statistics of a measurement of E performed on S.

Alessandro Toigo Covariant POVMs and instruments 5/37



Measurements in Quantum Mechanics
Structure theorems

References

Observables and instruments
Symmetry groups and covariant measurements
Examples

Observables
Definition
An observable (or positive operator valued measure, or POVM)
is a mapping E : A → L(H) such that

1 E(X ) ≥ 0 for all X ∈ A
2 E(Ω) = 1
3 WOT−

∑
i E(Xi) = E(∪iXi) if {Xi}i∈N is a sequence such

that Xi ∩ Xj = ∅ for i 6= j .

The probability measure pE
S on Ω

pE
S(X ) = tr [SE(X )]

describes the statistics of a measurement of E performed on S.

Alessandro Toigo Covariant POVMs and instruments 5/37



Measurements in Quantum Mechanics
Structure theorems

References

Observables and instruments
Symmetry groups and covariant measurements
Examples

Observables
Definition
An observable (or positive operator valued measure, or POVM)
is a mapping E : A → L(H) such that

1 E(X ) ≥ 0 for all X ∈ A
2 E(Ω) = 1
3 WOT−

∑
i E(Xi) = E(∪iXi) if {Xi}i∈N is a sequence such

that Xi ∩ Xj = ∅ for i 6= j .

The probability measure pE
S on Ω

pE
S(X ) = tr [SE(X )]

describes the statistics of a measurement of E performed on S.

Alessandro Toigo Covariant POVMs and instruments 5/37



Measurements in Quantum Mechanics
Structure theorems

References

Observables and instruments
Symmetry groups and covariant measurements
Examples

Observables
Definition
An observable (or positive operator valued measure, or POVM)
is a mapping E : A → L(H) such that

1 E(X ) ≥ 0 for all X ∈ A
2 E(Ω) = 1
3 WOT−

∑
i E(Xi) = E(∪iXi) if {Xi}i∈N is a sequence such

that Xi ∩ Xj = ∅ for i 6= j .

The probability measure pE
S on Ω

pE
S(X ) = tr [SE(X )]

describes the statistics of a measurement of E performed on S.

Alessandro Toigo Covariant POVMs and instruments 5/37



Measurements in Quantum Mechanics
Structure theorems

References

Observables and instruments
Symmetry groups and covariant measurements
Examples

Observables
Definition
An observable (or positive operator valued measure, or POVM)
is a mapping E : A → L(H) such that

1 E(X ) ≥ 0 for all X ∈ A
2 E(Ω) = 1
3 WOT−

∑
i E(Xi) = E(∪iXi) if {Xi}i∈N is a sequence such

that Xi ∩ Xj = ∅ for i 6= j .

The probability measure pE
S on Ω

pE
S(X ) = tr [SE(X )]

describes the statistics of a measurement of E performed on S.

Alessandro Toigo Covariant POVMs and instruments 5/37



Measurements in Quantum Mechanics
Structure theorems

References

Observables and instruments
Symmetry groups and covariant measurements
Examples

Instruments

Definition
An instrument (or completely positive (CP) operator valued
measure) is a mapping I : A → L(T (H)) such that

1 I(X ) is CP for all X ∈ A
2 tr [[I(Ω)](T )] = tr [T ] for all T ∈ T (H)

3 strong−
∑

i I(Xi) = I(∪iXi) if {Xi}i∈N is a sequence such
that Xi ∩ Xj = ∅ for i 6= j .
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Notation
IX := I(X ) ∈ L(T (H))
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Instruments

Definition
An instrument (or completely positive (CP) operator valued
measure) is a mapping I : A → L(T (H)) such that

1 I(X ) is CP for all X ∈ A
2 tr [[I(Ω)](T )] = tr [T ] for all T ∈ T (H)

3 strong−
∑

i I(Xi) = I(∪iXi) if {Xi}i∈N is a sequence such
that Xi ∩ Xj = ∅ for i 6= j .

The associated observable EI : A → L(H) is

tr
[
EI(X )T

]
:= tr [[I(X )](T )] ∀T ∈ T (H)
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Instruments

Definition
An instrument (or completely positive (CP) operator valued
measure) is a mapping I : A → L(T (H)) such that

1 I(X ) is CP for all X ∈ A
2 tr [[I(Ω)](T )] = tr [T ] for all T ∈ T (H)

3 strong−
∑

i I(Xi) = I(∪iXi) if {Xi}i∈N is a sequence such
that Xi ∩ Xj = ∅ for i 6= j .

If S ∈ S(H), its a posteriori state is

SX = IX (S)/tr [IX (S)] (0/0 = 0)
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Group actions
A simmetry group G acts

in S(H) by means of a projective unitary representation U
as

g[S] = U(g)SU(g)−1 g ∈ G, S ∈ S(H)

in Ω by means of a measurable action

g[ω] g ∈ G, ω ∈ Ω

Technical assumptions:
Ω is a locally compact second countable (lcsc) space, with
A = B(Ω)

G is a lcsc topological group
the map G × Ω 3 (g, ω) 7→ g[ω] ∈ Ω is continuous
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Projective representation

U : G→ U(H) is a projective representation if

U(g)U(h) = m(g,h)U(gh)

with |m(g,h)| = 1 and m(g,g−1) = 1
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Covariant measurements

Definition
An observable E : A → L(H) is covariant if

U(g)E(X )U(g)−1 = E(g[X ])

for all X ∈ A, g ∈ G

Definition
An instrument I : A → L(T (H)) is covariant if

U(g)IX (U(g)−1TU(g))U(g)−1 = Ig[X ](T )

for all X ∈ A, g ∈ G, T ∈ T (H)

Alessandro Toigo Covariant POVMs and instruments 8/37



Measurements in Quantum Mechanics
Structure theorems

References

Observables and instruments
Symmetry groups and covariant measurements
Examples

Covariant measurements

Definition
An observable E : A → L(H) is covariant if

U(g)E(X )U(g)−1 = E(g[X ])

for all X ∈ A, g ∈ G

Definition
An instrument I : A → L(T (H)) is covariant if

U(g)IX (U(g)−1TU(g))U(g)−1 = Ig[X ](T )

for all X ∈ A, g ∈ G, T ∈ T (H)

Alessandro Toigo Covariant POVMs and instruments 8/37

Remark
This means

pE
g[S](g[X ]) = pE

S(X )
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Remark
This means

(g[S])g[X ] = g[SX ] ∀S ∈ S(H)



Measurements in Quantum Mechanics
Structure theorems

References

Observables and instruments
Symmetry groups and covariant measurements
Examples

Example: position and momentum (in dim. 1)

H = L2 (R)

Ω =


R = position
P = momentum

R× P = phase-space

G =

{
T = group of translation
B = group of boosts

}
' R

U : T → U(H) [U(a)f ](x) = f (x − a)

V : B → U(H) [V (p)f ](x) = eipx f (x)
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Example: position and momentum (in dim. 1)

Definition
E : B(R)→ L(H) is a position observable if

U(a)E(X )U(a)−1 = E(X + a) V (p)E(X )V (p)−1 = E(X )
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Example: position and momentum (in dim. 1)

Definition
E : B(R)→ L(H) is a position observable if

U(a)E(X )U(a)−1 = E(X + a) V (p)E(X )V (p)−1 = E(X )

Example
The canonical position observable is

[Q(X )f ] = 1X (x)f (x) ∀f ∈ L2 (R)
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Example: position and momentum (in dim. 1)

Definition
E : B(R)→ L(H) is a position observable if

U(a)E(X )U(a)−1 = E(X + a) V (p)E(X )V (p)−1 = E(X )

Definition
F : B(P)→ L(H) is a momentum observable if

U(a)F(Y )U(a)−1 = F(Y ) V (p)F(Y )V (p)−1 = F(Y + p)

Example
The canonical momentum observable is

P(Y ) = F−1Q(Y )F
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Example: position and momentum (in dim. 1)

Definition
E : B(R)→ L(H) is a position observable if

U(a)E(X )U(a)−1 = E(X + a) V (p)E(X )V (p)−1 = E(X )

Definition
F : B(P)→ L(H) is a momentum observable if

U(a)F(Y )U(a)−1 = F(Y ) V (p)F(Y )V (p)−1 = F(Y + p)

Definition
G : B(R× P)→ L(H) is a phase-space observable if

U(a)G(X × Y )U(a)−1 = F((X + a)× Y )

V (p)F(X × Y )V (p)−1 = F(X × (Y + p))
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Example: position and momentum (in dim. 1)
In terms of a single irreducible projective representation

W : T × B → U(H) W (a,p) = U(a)V (p)

and actions

(a,p)[x ]1 = x + a on R
(a,p)[y ]2 = y + p on P

(a,p)[(x , y)] = (x + a, y + p) on R× P

we have

W (x ,p)E(X )W (x ,p)−1 = E((x ,p)[X ]1)

W (x ,p)F(Y )W (x ,p)−1 = F((x ,p)[Y ]2)

W (x ,p)G(Z )W (x ,p)−1 = E((x ,p)[Z ])
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Remark
The actions change, but the group representation is
the same
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Example: phase observable for the photon

H = span {|n〉 | n = 0,1,2 . . .} = state space for the single
mode optical field
|z〉 = e−|z|

2/2∑
n

zn
√

n!
|n〉 = monochromatic laser light of

energy |z| and phase arg z
(Ω,A) = ([0,2π],B([0,2π])) = phase
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H = span {|n〉 | n = 0,1,2 . . .} = state space for the single
mode optical field
|z〉 = e−|z|

2/2∑
n

zn
√

n!
|n〉 = monochromatic laser light of

energy |z| and phase arg z
(Ω,A) = ([0,2π],B([0,2π])) = phase

For a phase observable E we require

pE
|zeiθ〉(X ) = pE

|z〉(X + θ (mod 2π)) ∀X ∈ B(Ω)
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2/2∑
n

zn
√

n!
|n〉 = monochromatic laser light of

energy |z| and phase arg z
(Ω,A) = ([0,2π],B([0,2π])) = phase

Definition
E : B(Ω)→ L(H) is a phase observable if

eiθNE(X )e−iθN = E(X + θ (mod 2π))

for all X ∈ B(Ω), θ ∈ [0,2π]
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Number operator
N = a∗a, with a,a∗ the lowering and raising
operators
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Systems of imprimitivity

Definition
A system of imprimitivity based on Ω is a triple (V ,P,K), where

V is a unitary representation of G in the Hilbert space K
P : B(Ω)→ L(K) is a projection valued measure
for all X ∈ B(Ω), g ∈ G

V (g)P(X )V (g)∗ = P(g[X ])
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PVMs
A projection valued measure is a POVM P satisfying

P(X )P(Y ) = P(X ∩ Y )
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Dilation theorem for observables

Theorem (Cattaneo, 1979)
E is an U-covariant POVM based on Ω iff there exists

a system of imprimitivity (V ,P,K) based on Ω

an isometry W : H → K satisfying

WU(g) = V (g)W ∀g ∈ G

such that, for all X ∈ B(Ω),

E(X ) = W ∗P(X )W .
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Dilation theorem for instruments

Theorem (Denisov, 1990; Carmeli, Heinosaari, Toigo, 2009)

I is an U-covariant instrument based on Ω iff there exists
a system of imprimitivity (V ,P,K) based on Ω

an isometry W : H → K⊗H satisfying

WU(g) = (V (g)⊗ U(g))W ∀g ∈ G

such that, for all X ∈ B(Ω) and T ∈ T (H),

IX (T ) = trK [(P(X )⊗ IH)WTW ∗] .
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Inducing functor and imprimitivity theorem

Basic assumptions
In the following

H is a closed subgroup of G
Ω is the homogeneous space G/H

Induction is a functor

Rep (H) 3 σ 7−→ (Vσ,Pσ,Kσ) ∈ Impr (G,G/H)

Theorem (Mackey)
Induction is an equivalence of categories.

Alessandro Toigo Covariant POVMs and instruments 17/37
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Example

If H = {1} and σ = 1, then
Kσ = L2 (G, µG)

[Vσ(g)f ](h) = f (g−1h)

[Pσ(X )f ](h) = 1X (h)f (h)
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General problem

For all σ ∈ Rep (H)

Diagonalize (Vσ,Kσ)

⇓

Find all possible isometries W : H → Kσ such that
WU(g) = Vσ(g)W ∀g ∈ G

⇓

Write down explicitely W ∗Pσ(X )W and trK [(P(X )⊗ IH)WTW ∗]
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Particular solutions

A complete solution is available in the following cases
(1) G generic, H compact, U irreducible
(2) G abelian, H generic, U generic
(3) G compact, H generic, U generic
(4) G = H n K , H normal and abelian, U irreducible
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Particular solutions

A complete solution is available in the following cases
(1) G generic, H compact, U irreducible
(2) G abelian, H generic, U generic
(3) G compact, H generic, U generic
(4) G = H n K , H normal and abelian, U irreducible

Example
Phase-space observables and instruments ∈ (1)
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Particular solutions

A complete solution is available in the following cases
(1) G generic, H compact, U irreducible
(2) G abelian, H generic, U generic
(3) G compact, H generic, U generic
(4) G = H n K , H normal and abelian, U irreducible

Example
Phase observables ∈ (2)∩(3)
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Particular solutions

A complete solution is available in the following cases
(1) G generic, H compact, U irreducible
(2) G abelian, H generic, U generic
(3) G compact, H generic, U generic
(4) G = H n K , H normal and abelian, U irreducible

Example
Position and momentum observables ∈ (4)
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G generic, H compact, U irreducible
Theorem (Cassinelli, De Vito, Toigo, 2003)

Suppose U projective and irreducible, H ⊂ G compact. Then
there exists U-covariant POVMs on G/H iff U is square
integrable.
In this case, there exists a selfadjoint positive operator
C : H → H such that every U-covariant POVM on G/H is of the
form

E(X ) =

∫
X

U(g)CSCU(g)−1 dµG/H(gH) ∀X ∈ B(G/H)

with S ∈ S(H) such that

SU(h) = U(h)S ∀h ∈ H.
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Square integrable representations

U is square integrable if there exists a nonzero
v ∈ H such that∫

G
|〈 v , U(g)v 〉|2 dµG(g) <∞
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form

E(X ) =

∫
X

U(g)CSCU(g)−1 dµG/H(gH) ∀X ∈ B(G/H)

with S ∈ S(H) such that

SU(h) = U(h)S ∀h ∈ H.
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Formal degree

The selfadjoint operator C2 is the formal degree
of G
C = λI if G is unimodular, and is unbounded if
G is non-unimodular
U(g)C = ∆G(g)−1/2CU(g) for all g ∈ G
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G generic, H compact, U irreducible
Theorem (Carmeli, Heinosaari, Toigo 2009)

Suppose U projective irreducible, H compact. Then there exists
U-covariant instruments on G/H iff U is square integrable.
In this case, if C is as before, every U-covariant instrument on
G/H is of the form

I∗X (A) =

∫
X

U(g)CΦ(U(g)∗AU(g))CU(g)−1 dµG/H(gH)

for all X ∈ B(G/H), A ∈ L(H), where Φ : L(H)→ T (H) is such
that

Φ is normal and CP
tr [Φ(I)] = 1
Φ(U(h)AU(h)−1) = U(h)Φ(A)U(h)−1 ∀A ∈ L(H), h ∈ H
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Position and momentum observables

Theorem
E is a position observable iff there exists a probability density ρ
on R such that

E(X ) ≡ Eρ(X ) :=

∫
R
ρ(X − x) dQ(x)

Theorem
F is a position observable iff there exists a probability density ν
on P such that

F(Y ) ≡ Fν(Y ) :=

∫
P
ν(Y − y) dP(y)
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Remark
It follows that the associated probability distributions
are just convolutions with the canonical ones

pEρ

S = ρ ∗ pQ
S

pFν

S = ν ∗ pP
S
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Phase space

There exists phase space observables, and every phase
space observable is of the form

G(X × Y ) =
1

2π

∫∫
X×Y

U(a)V (p)SV (p)∗U(a)∗ da dp

with S ∈ S(H)

The margins of G

E(X ) := G(X × P)

F(Y ) := G(R× Y )

are position and momentum observables, respectively.
Their associated probability densities ρ, ν are absolutely
continuous wrt the Lebesgue measure and Fourier-related

Alessandro Toigo Covariant POVMs and instruments 23/37
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Coexistence

Position and momentum observables Eρ, Fν are coexistent if
they are margins of a single observable G on R× P

Theorem
Eρ and Fν are coexistent iff they are margins of a phase space
observable.

Consequences
If Eρ and Fν are coexistent, then ρ, ν are absolutely
continuous wrt the Lebesgue measure and Fourier-related

Var
(

pEρ

S

)
Var
(

pFν

S

)
≥ 1 for all S ∈ S(H)

. . .
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Position and momentum instruments

Definition
An instrument I : B(R)→ L(T (H)) is a position instrument if

U(a)IX (U(a)∗TU(a))U(a)∗ = IX+a(T )

V (p)IX (V (p)∗TV (p))V (p)∗ = IX (T )

A similar definition holds for momentum instruments. In
particular, J : B(P)→ L(T (H)) is a momentum instrument iff

IX (T ) = FJX (F−1TF)F−1

defines a position instrument I.

Alessandro Toigo Covariant POVMs and instruments 25/37
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Structure theorem for position instruments
Theorem
There is a one-to-one correspondence between position
instruments and couples (µ,K ), with

µ probability measure on R
K : R2 × R2 → C positive semidefinite kernel satisfying∫

K (x ,h; x ,h) dx dµ(h) = 1

If (µ,K ) is as above, the corresponding position instrument is

[IX (T )](x , y) =

∫
1X (z)T (x+h, y+h)K (z−y ,h; z−x ,h) dz dµ(h)

Alessandro Toigo Covariant POVMs and instruments 26/37
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Positive definite kernels
A map K : X × X → C is positive semidefinite if for all
N ∈ Z+, {xi}i=1,2...N ⊂ X , {ci}i=1,2...N ⊂ C

N∑
i,j=1

cicjK (xi , xj) ≥ 0
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Remark
Trace class operators have been identified with their
associated kernels, i. e.

Tf (x) =

∫
T (x , y)f (y) dy ∀f ∈ L2 (R)
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G abelian, H generic, U generic
Dual group:

Ĝ = {γ ∈ C(G) | γ(gh) = γ(g)γ(h) ∀g,h ∈ G}

Annihilator of H in Ĝ:

H⊥ =
{
γ ∈ Ĝ | γ(h) = 1 ∀h ∈ H

}
Quotient map:

p : Ĝ→ Ĝ/H⊥

We have identifications

Ĥ = Ĝ/H⊥ (canonical)

Ĝ = Ĝ/H⊥ × H⊥ (depending on a cross-section)
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H⊥ =
{
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G abelian, H generic, U generic

Theorem

Let U be the diagonal representation in H = L2
(

Ĝ, ν;K
)

.
There exists U-covariant POVMs on G/H iff ν = α p(ν)⊗ µH⊥ .
In this case, every U-covariant POVM on G/H has the form

〈E(X )ψ , φ 〉 =

∫
Ĝ

dν(γ)

∫
H⊥

dµH⊥(χ)

∫
X

dµG/H(gH)√
α(γ)α(γχ−1) χ(gH)

〈
W (γχ−1)ψ(γχ−1) , W (γ)φ(γ)

〉
for some choice of a map

Ĝ 3 γ 7→Wγ ∈ L(K;K∞) W ∗
γWγ = IK

Alessandro Toigo Covariant POVMs and instruments 28/37
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Ĝ 3 γ 7→Wγ ∈ L(K;K∞) W ∗
γWγ = IK

Alessandro Toigo Covariant POVMs and instruments 28/37

Diagonal representation

The action of U in L2
(

Ĝ, ν;K
)

is

[U(g)φ](γ) = γ(g)φ(γ)

Every unitary representation of G is the sum⊕
n∈Z+∪{∞}

Un

with Un acting in L2
(

Ĝ, νn;Kn

)
as above,

dimKn = n and νm ⊥ νn if m 6= n
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Ĝ 3 γ 7→Wγ ∈ L(K;K∞) W ∗
γWγ = IK

Alessandro Toigo Covariant POVMs and instruments 28/37



Measurements in Quantum Mechanics
Structure theorems

References

General structure theorems
Explicit structure theorems and examples

Example: phase observables

G = T, H = {1}
H = L2 (N,#)

U(z)δn = znδn
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Example: phase observables

G = T, H = {1}
H = L2 (N,#)

U(z)δn = znδn

In the previous theorem
Ĝ = H⊥ = Z, G/H = G
µH⊥ = # on Z, ν = # restricted to N, µG/H is the Haar
measure of T
K = C, and we can choose K∞ = H
Wn = ηn ∈ H, with ‖ηn‖ = 1
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Example: phase observables

G = T, H = {1}
H = L2 (N,#)

U(z)δn = znδn

Every phase observable is of the form

E(X ) =
∑

m,n∈N
cmn

∫
X

zm−n dz |m〉 〈n| ∀X ∈ B(T)

where the matrix {cmn = 〈 ηn , ηm 〉}m,n∈N is positive semidefinite
and cnn = 1.
In particular, there is no sharp phase observable.
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G compact, H compact, U generic

H =
⊕
π∈Ĝ

Hπ ⊗Kπ

U =
⊕
π∈Ĝ

π ⊗ IKπ

where Ĝ is the set of irreducible unitary representations (π,Hπ)
of G
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G compact, H compact, U generic

H =
⊕
π∈Ĝ

Hπ ⊗Kπ

U =
⊕
π∈Ĝ

π ⊗ IKπ

Let C be the convex set of maps K : Ĝ × Ĝ→ L(H) s. t.
1 K (ρ, π)U(h) = U(h)K (ρ, π) for all h ∈ H
2
∑

ρ,π 〈K (ρ, π)vπ , vρ 〉 ≥ 0 for all sequences {vπ}
π∈Ĝ in H

with only a finite number of nonzero elements
3 trHρ(K (π, π)) = δρπdρIKρ
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G compact, H compact, U generic

Theorem
There is a one-to-one convex correspondence betwteen C and
the set of U-covariant POVMs on G/H, given by

〈E(X )vπ , wρ 〉 =

∫
X
〈K (ρ, π)U(g)∗vπ , U(g)∗wρ 〉 dµG/H(gH)

for all vπ ∈ Hπ ⊗Kπ, wρ ∈ Hρ ⊗Kρ
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An application: extremal POVMs

The POVMs on a set Ω form a convex set P(Ω), which is
compact in a suitable weak-* topology
If E /∈ extP(Ω), then E = p1E1 + p2E2 with p1 + p2 = 1,
i. e. E comes from the random choice between two
different observables
Every E ∈ P(Ω) can be approximated by the convex sum
of elements in extP(Ω)

The elements in extP(Ω) optimize convex cost functions in
quantum estimation theory
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An application: extremal POVMs

For K ∈ C, let HK be the RKHS associated to K .

HK carries an unitary representation Ũ of H, given by

[Ũ(h)f ](π) = U(h)f (π)

TU := {T ∈ T (H) | TU(g) = U(g)T ∀g ∈ G}

TŨ :=
{

T ∈ T (HK ) | T Ũ(h) = Ũ(h)T ∀h ∈ H
}

T̃U := span
{

ev∗πT evπ | T ∈ TU , π ∈ Ĝ
}
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Reproducing kernel Hilbert space associated to K

H0
K = span

{
K (·, π)v | π ∈ Ĝ, v ∈ H

}
〈 · , · 〉K : H0

K ×H
0
K → C given by

〈K (·, π)v , K (·, ρ)w 〉K = 〈K (ρ, π)v , w 〉

Then the completion HK of H0
K is a Hilbert space of

H-valued functions in which the evaluation maps evπ
are continuous
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An application: extremal POVMs

Theorem
The POVM associated to K is extremal in the set of U-covariant
POVMs on G/H iff T̃U = TŨ .

Example: extremal phase observables
Let E be a phase observable with associated matrix
{cmn}m,n∈N. Let

{ηn}n∈N be vectors in H such that cmn = 〈 ηm , ηn 〉
H0 be their closed linear span.

Then E is extremal in the convex set of phase observables iff

T (H0) = span {|ηn〉 〈ηn| | n ∈ N}
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