Normal completely positive maps on the space of quantum operations

Alessandro Toigo

Politecnico di Milano, INFN sezione di Milano

Turku, 4 July 2012

In collaboration with:

Giulio Chiribella

Perimeter Institute for Theoretical Physics (Canada)

Veronica Umanità

Università di Genova (Italy)

Index

- Quantum operations
 - Definition
 - Dilation of quantum operations
- Quantum supermaps
 - Definition
 - Dilation of quantum supermaps
 - Examples
- Superinstruments
 - Definition
 - Dilation of superinstruments
 - Examples
- Conclusions

Index

- Quantum operations
 - Definition
 - Dilation of quantum operations
- Quantum supermaps
 - Definition
 - Dilation of quantum supermaps
 - Examples
- Superinstruments
 - Definition
 - Dilation of superinstruments
 - Examples
- 4 Conclusions

- $\mathcal{M}\subset\mathcal{L}(\mathcal{H}),\,\mathcal{N}\subset\mathcal{L}(\mathcal{K})\ldots$: complex and separable von Neumann algebras
- $\mathcal{M}_+, \mathcal{N}_+, \ldots$: cones of their positive elements
- $M_n := \mathcal{L}\left(\mathbb{C}^n\right)$: von Neumann algebra of complex $n \times n$ -matrices
- $\mathcal{M} \hat{\otimes} \mathcal{N}$: algebraic tensor product of \mathcal{M} and \mathcal{N}
- ullet $\mathcal{M} \bar{\otimes} \mathcal{N}$: von Neumann algebra tensor product of \mathcal{M} and \mathcal{N}

Recall that

$$\mathcal{M} \hat{\otimes} \mathcal{N} \subset \mathcal{L} \left(\mathcal{H} \otimes \mathcal{K} \right)$$

and

$$\mathcal{M} \bar{\otimes} \mathcal{N} = \text{weak*-closure of } \mathcal{M} \hat{\otimes} \mathcal{N}$$

- $\mathcal{M}\subset\mathcal{L}(\mathcal{H}),\,\mathcal{N}\subset\mathcal{L}(\mathcal{K})\ldots$: complex and separable von Neumann algebras
- \mathcal{M}_+ , \mathcal{N}_+ , ...: cones of their positive elements
- $M_n := \mathcal{L}\left(\mathbb{C}^n\right)$: von Neumann algebra of complex $n \times n$ -matrices
- $\mathcal{M} \hat{\otimes} \mathcal{N}$: algebraic tensor product of \mathcal{M} and \mathcal{N}
- ullet $\mathcal{M} \bar{\otimes} \mathcal{N}$: von Neumann algebra tensor product of \mathcal{M} and \mathcal{N}

Recall that

$$\mathcal{M} \hat{\otimes} \mathcal{N} \subset \mathcal{L} \left(\mathcal{H} \otimes \mathcal{K} \right)$$

and

$$\mathcal{M} \bar{\otimes} \mathcal{N} = weak^*\text{-closure of } \mathcal{M} \hat{\otimes} \mathcal{N}$$

Remarks

- $\bullet \ \mathcal{L}(\mathcal{H})\bar{\otimes}\mathcal{L}(\mathcal{K}) = \mathcal{L}\left(\mathcal{H}\otimes\mathcal{K}\right)$
- If dim $\mathcal{N} < \infty$, then $\mathcal{M} \hat{\otimes} \mathcal{N} = \mathcal{M} \bar{\otimes} \mathcal{N}$
- If dim $\mathcal{N}_i < \infty$ and $\mathcal{E}: \mathcal{M}_1 \to \mathcal{M}_2$, $\mathcal{F}: \mathcal{N}_1 \to \mathcal{N}_2$ are linear maps, then $\mathcal{E} \otimes \mathcal{F}: \mathcal{M}_1 \bar{\otimes} \mathcal{N}_1 \to \mathcal{M}_2 \bar{\otimes} \mathcal{N}_2$ is well-defined

Definition

A linear map $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ is *completely positive* if the map

$$\mathcal{E}\otimes\mathcal{I}_n:\mathcal{M}\bar{\otimes}M_n\to\mathcal{N}\bar{\otimes}M_n$$

is positive for all $n \in \mathbb{N}$.

Here, $\mathcal{I}_n: M_n \to M_n$ is the identity map

Remarks

- $\bullet \ \mathcal{L}(\mathcal{H})\bar{\otimes}\mathcal{L}(\mathcal{K}) = \mathcal{L}\left(\mathcal{H}\otimes\mathcal{K}\right)$
- If dim $\mathcal{N}<\infty$, then $\mathcal{M}\hat{\otimes}\mathcal{N}=\mathcal{M}\bar{\otimes}\mathcal{N}$
- If $\dim \mathcal{N}_i < \infty$ and $\mathcal{E}: \mathcal{M}_1 \to \mathcal{M}_2$, $\mathcal{F}: \mathcal{N}_1 \to \mathcal{N}_2$ are linear maps, then $\mathcal{E} \otimes \mathcal{F}: \mathcal{M}_1 \bar{\otimes} \mathcal{N}_1 \to \mathcal{M}_2 \bar{\otimes} \mathcal{N}_2$ is well-defined

Definition

A linear map $\mathcal{E}:\mathcal{M}\to\mathcal{N}$ is *completely positive* if the map

$$\mathcal{E} \otimes \mathcal{I}_n : \mathcal{M} \bar{\otimes} M_n \to \mathcal{N} \bar{\otimes} M_n$$

is positive for all $n \in \mathbb{N}$.

Here, $\mathcal{I}_n: M_n \to M_n$ is the identity map

Remarks

- $\bullet \ \mathcal{L}(\mathcal{H})\bar{\otimes}\mathcal{L}(\mathcal{K}) = \mathcal{L}\left(\mathcal{H}\otimes\mathcal{K}\right)$
- If dim $\mathcal{N}<\infty$, then $\mathcal{M} \hat{\otimes} \mathcal{N} = \mathcal{M} \bar{\otimes} \mathcal{N}$
- If $\dim \mathcal{N}_i < \infty$ and $\mathcal{E}: \mathcal{M}_1 \to \mathcal{M}_2$, $\mathcal{F}: \mathcal{N}_1 \to \mathcal{N}_2$ are linear maps, then $\mathcal{E} \otimes \mathcal{F}: \mathcal{M}_1 \bar{\otimes} \mathcal{N}_1 \to \mathcal{M}_2 \bar{\otimes} \mathcal{N}_2$ is well-defined

Definition

A linear map $\mathcal{E}:\mathcal{M}\to\mathcal{N}$ is *completely positive* if the map

$$\mathcal{E}\otimes\mathcal{I}_n:\mathcal{M}\bar{\otimes}M_n\to\mathcal{N}\bar{\otimes}M_n$$

is positive for all $n \in \mathbb{N}$.

Here, $\mathcal{I}_n: M_n \to M_n$ is the identity map

Remarks

- $\bullet \ \mathcal{L}(\mathcal{H})\bar{\otimes}\mathcal{L}(\mathcal{K}) = \mathcal{L}\left(\mathcal{H}\otimes\mathcal{K}\right)$
- If dim $\mathcal{N}<\infty$, then $\mathcal{M} \hat{\otimes} \mathcal{N} = \mathcal{M} \bar{\otimes} \mathcal{N}$
- If dim $\mathcal{N}_i < \infty$ and $\mathcal{E}: \mathcal{M}_1 \to \mathcal{M}_2$, $\mathcal{F}: \mathcal{N}_1 \to \mathcal{N}_2$ are linear maps, then $\mathcal{E} \otimes \mathcal{F}: \mathcal{M}_1 \bar{\otimes} \mathcal{N}_1 \to \mathcal{M}_2 \bar{\otimes} \mathcal{N}_2$ is well-defined

Definition

A linear map ${\mathcal E}$

It then makes sense to speak about positivity and boundedness of $\mathcal{E}\otimes\mathcal{F}$

$$\mathcal{E} \otimes \mathcal{I}_n : \mathcal{M} \otimes M_n \to \mathcal{N} \otimes M_n$$

is positive for all $n \in \mathbb{N}$.

Here, $\mathcal{I}_n: M_n \to M_n$ is the identity map

Remarks

- ullet $\mathcal{L}(\mathcal{H})\bar{\otimes}\mathcal{L}(\mathcal{K}) = \mathcal{L}\left(\mathcal{H}\otimes\mathcal{K}\right)$
- If dim $\mathcal{N}<\infty$, then $\mathcal{M} \hat{\otimes} \mathcal{N} = \mathcal{M} \bar{\otimes} \mathcal{N}$
- If dim $\mathcal{N}_i < \infty$ and $\mathcal{E}: \mathcal{M}_1 \to \mathcal{M}_2$, $\mathcal{F}: \mathcal{N}_1 \to \mathcal{N}_2$ are linear maps, then $\mathcal{E} \otimes \mathcal{F}: \mathcal{M}_1 \bar{\otimes} \mathcal{N}_1 \to \mathcal{M}_2 \bar{\otimes} \mathcal{N}_2$ is well-defined

Definition

A linear map $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ is *completely positive* if the map

$$\mathcal{E}\otimes\mathcal{I}_n:\mathcal{M}\bar{\otimes}M_n\to\mathcal{N}\bar{\otimes}M_n$$

is positive for all $n \in \mathbb{N}$.

Here, $\mathcal{I}_n: M_n \to M_n$ is the identity map

Definition of quantum operations and channels

Definition

A linear map $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ is a *quantum operation* if it is

- (i) completely positive
- (ii) normal:

$$\mathcal{E}(A_n) \uparrow \mathcal{E}(A)$$
 for all sequences $\{A_n\}_{n \in N}$ in \mathcal{M}_+ s. t. $A_n \uparrow A$

(iii) subnormalized:

$$\mathcal{E}(I_{\mathcal{M}}) \leq I_{\mathcal{N}}$$

 ${\cal E}$ is a *quantum channel* if condition (iii) is replaced by

(iii') normalized:

$$\mathcal{E}(I_{\mathcal{M}}) = I_{\mathcal{N}}$$

Definition of quantum operations and channels

Definition

A linear map $\mathcal{E}:\mathcal{M}\to\mathcal{N}$ is a *quantum operation* if it is

- (i) completely positive
- (ii) normal:

$$\mathcal{E}(A_n) \uparrow \mathcal{E}(A)$$
 for all sequences $\{A_n\}_{n \in N}$ in \mathcal{M}_+ s. t. $A_n \uparrow A$

(iii) subnormalized:

$$\mathcal{E}(I_{\mathcal{M}}) \leq I_{\mathcal{N}}$$

 ${\cal E}$ is a *quantum channel* if condition (iii) is replaced by

(iii') normalized:

$$\mathcal{E}(I_{\mathcal{M}})=I_{\mathcal{N}}$$

Definition of quantum operations and channels

Definition

A linear map $\mathcal{E}:\mathcal{M}\to\mathcal{N}$ is a quantum operation if it is

(i) completely positive

Notations

- ullet CP $(\mathcal{M},\mathcal{N})$: normal completely positive maps in $\mathrm{Hom}_{\mathbb{C}}(\mathcal{M},\mathcal{N})$
- \bullet $CP_{0}\left(\mathcal{M},\mathcal{N}\right)$: subset of quantum operations
- \bullet $\mbox{CP}_1\left(\mathcal{M},\mathcal{N}\right)$: subset of quantum channels

Clearly,

$$\operatorname{CP}_1(\mathcal{M},\mathcal{N})\subset\operatorname{CP}_0(\mathcal{M},\mathcal{N})\subset\operatorname{CP}(\mathcal{M},\mathcal{N})$$

(iii') normalized:

$$\mathcal{E}(I_{\mathcal{M}})=I_{\mathcal{N}}$$

Stinespring Theorem

Theorem

Suppose $\mathcal{M} \subset \mathcal{L}(\mathcal{H})$, $\mathcal{N} \subset \mathcal{L}(\mathcal{K})$. A linear map $\mathcal{E}: \mathcal{M} \to \mathcal{N}$ is a quantum operation iff there exist a Hilbert space \mathcal{V} and a bounded operator $V: \mathcal{K} \to \mathcal{H} \otimes \mathcal{V}$, with $\|V\|_{\infty} \leq 1$, such that

$$\mathcal{E}(A) = V^*(A \otimes I_{\mathcal{V}})V \qquad \forall A \in \mathcal{M}.$$

In this case, \mathcal{E} is a quantum channel iff $V^*V = I_{\mathcal{K}}$

Index

- Quantum operations
 - Definition
 - Dilation of quantum operations
- Quantum supermaps
 - Definition
 - Dilation of quantum supermaps
 - Examples
- Superinstruments
 - Definition
 - Dilation of superinstruments
 - Examples
- 4 Conclusions

Statement of the problem

Problem

Characterize the transformations

$$S: CP_0\left(\mathcal{M}, \mathcal{N}\right) \to CP_0\left(\mathcal{M}, \mathcal{N}\right)$$

or, more generally,

$$S: \operatorname{CP}_0\left(\mathcal{M}_1, \mathcal{N}_1\right) \to \operatorname{CP}_0\left(\mathcal{M}_2, \mathcal{N}_2\right)$$

which are admissible in Quantum Mechanics (quantum supermaps)

Applications

- Quantum information
- Quantum measurement theory
- Quantum process tomography

Statement of the problem

Problem

Characterize the transformations

$$S: CP_0(\mathcal{M}, \mathcal{N}) \to CP_0(\mathcal{M}, \mathcal{N})$$

or, more generally,

$$S: \mathrm{CP}_0\left(\mathcal{M}_1, \mathcal{N}_1\right) \to \mathrm{CP}_0\left(\mathcal{M}_2, \mathcal{N}_2\right)$$

which are admissible in Quantum Mechanics (quantum supermaps)

Applications

- Quantum information
- Quantum measurement theory
- Quantum process tomography

A quantum supermap must preserve mixtures and S(0)=0 $\begin{tabular}{l} & & \\ &$

S uniquely extends to a linear map defined on $\operatorname{span}\operatorname{CP}_0\left(\mathcal{M},\mathcal{N}\right)$

But what is the linear space spanned by $CP_0(\mathcal{M}, \mathcal{N})$?

A quantum supermap must preserve mixtures and S(0)=0 \Downarrow S is convex and S(0)=0

S uniquely extends to a linear map defined on $\operatorname{span}\operatorname{CP}_0\left(\mathcal{M},\mathcal{N}\right)$

But what is the linear space spanned by $CP_0(\mathcal{M}, \mathcal{N})$?

Example

Suppose

$$\mathcal{M} = \mathcal{N} = \mathcal{L}(\mathcal{H}).$$

• If $\mathcal{H} = \mathbb{C}^n$

$$\operatorname{span} \operatorname{CP}_{0}(\mathcal{M}, \mathcal{N}) = \operatorname{span} \operatorname{CP}_{0}(M_{n}, M_{n})$$

$$= M_{n^{2}}$$

$$= \operatorname{Hom}_{0}(M_{n}, M_{n})$$

• If dim $\mathcal{H} = \infty$

$$\operatorname{span} \operatorname{CP}_0(\mathcal{M}, \mathcal{N}) = ???$$

Example

Suppose

$$\mathcal{M} = \mathcal{N} = \mathcal{L}(\mathcal{H}).$$

• If $\mathcal{H} = \mathbb{C}^n$

$$\operatorname{span} \operatorname{CP}_{0}(\mathcal{M}, \mathcal{N}) = \operatorname{span} \operatorname{CP}_{0}(M_{n}, M_{n})$$

$$= M_{n^{2}}$$

$$= \operatorname{Hom}_{\mathbb{C}}(M_{n}, M_{n})$$

• If dim
$$\mathcal{H} = \infty$$

span
$$CP_0(\mathcal{M}, \mathcal{N}) = ???$$

Example

Suppose

$$\mathcal{M} = \mathcal{N} = \mathcal{L}(\mathcal{H}).$$

• If
$$\mathcal{H} = \mathbb{C}^n$$

$$\operatorname{span} \operatorname{CP}_0(\mathcal{M}, \mathcal{N}) = \operatorname{span} \operatorname{CP}_0(M_n, M_n)$$

By Choi isomorphism,

$$CP(M_n, M_n) \simeq M_{n^2+1}$$

span $CP_0(\mathcal{N}_l, \mathcal{N}_l) = !!!$

Example

Suppose

$$\mathcal{M} = \mathcal{N} = \mathcal{L}(\mathcal{H}).$$

• If $\mathcal{H} = \mathbb{C}^n$

$$\operatorname{span} \operatorname{CP}_0(\mathcal{M}, \mathcal{N}) = \operatorname{span} \operatorname{CP}_0(M_n, M_n)$$

$$= M_{n^2}$$

$$= \operatorname{Hom}_{\mathbb{C}}(M_n, M_n)$$

• If dim $\mathcal{H} = \infty$

span
$$CP_0(\mathcal{M}, \mathcal{N}) = ???$$

Example

Suppose

$$\mathcal{M} = \mathcal{N} = \mathcal{L}(\mathcal{H}).$$

• If $\mathcal{H} = \mathbb{C}^n$

$$\operatorname{span} \operatorname{CP}_0(\mathcal{M}, \mathcal{N}) = \operatorname{span} \operatorname{CP}_0(M_n, M_n)$$

$$= M_{n^2}$$

$$= \operatorname{Hom}_{\mathbb{C}}(M_n, M_n)$$

• If dim $\mathcal{H} = \infty$

span
$$CP_0(\mathcal{M}, \mathcal{N}) = ???$$

Completely bounded maps: Definition

Definition

A linear map $\mathcal{E}:\mathcal{M}\to\mathcal{N}$ is completely bounded if \exists C>0 such that

$$\left\| (\mathcal{E} \otimes \mathcal{I}_n)(A) \right\|_{\infty} \leq C \left\| A \right\|_{\infty}$$

for all $A \in \mathcal{M} \bar{\otimes} M_n$ and $n \in \mathbb{N}$

Example

Suppose $\mathcal{M} \subset \mathcal{L}(\mathcal{H})$, $\mathcal{N} = \mathcal{L}(\mathcal{K})$. If $E, F \in \mathcal{L}(\mathcal{K}; \mathcal{H})$, the map

$$E^* \odot_{\mathcal{M}} F: \mathcal{M} \longrightarrow \mathcal{L}(\mathcal{K})$$
 $A \longmapsto E^* A F$

is in CB $(\mathcal{M}, \mathcal{L}(\mathcal{K}))$

Completely bounded maps: Definition

Definition

A linear map $\mathcal{E}:\mathcal{M}\to\mathcal{N}$ is completely bounded if \exists C>0 such that

$$\left\|(\mathcal{E}\otimes\mathcal{I}_n)(A)\right\|_{\infty}\leq C\left\|A\right\|_{\infty}$$

for all $A \in \mathcal{M} \bar{\otimes} M_n$ and $n \in \mathbb{N}$

Notation

 $CB\left(\mathcal{M},\mathcal{N}\right)$: completely bounded weak*-continuous maps from \mathcal{M} to \mathcal{N}

$$A \longmapsto E^*AF$$

is in CB $(\mathcal{M}, \mathcal{L}(\mathcal{K}))$

Completely bounded maps: Definition

Definition

A linear map $\mathcal{E}:\mathcal{M}\to\mathcal{N}$ is completely bounded if $\exists~C>0$ such that

$$\|(\mathcal{E}\otimes\mathcal{I}_n)(A)\|_{\infty}\leq C\|A\|_{\infty}$$

for all $A \in \mathcal{M} \bar{\otimes} M_n$ and $n \in \mathbb{N}$

Example

Suppose $\mathcal{M} \subset \mathcal{L}(\mathcal{H})$, $\mathcal{N} = \mathcal{L}(\mathcal{K})$. If $E, F \in \mathcal{L}(\mathcal{K}; \mathcal{H})$, the map

$$\begin{array}{cccc} E^* \odot_{\mathcal{M}} F : & \mathcal{M} & \longrightarrow & \mathcal{L}(\mathcal{K}) \\ & A & \longmapsto & E^* A F \end{array}$$

is in CB $(\mathcal{M}, \mathcal{L}(\mathcal{K}))$

- **Ordering:** $CP(\mathcal{M}, \mathcal{N})$ is a cone in $CB(\mathcal{M}, \mathcal{N})$, hence it induces a linear ordering in $CB(\mathcal{M}, \mathcal{N})$, which we denote by \leq
- **2 Tensoring:** If $\mathcal{E} \in CB(\mathcal{M}_1, \mathcal{N}_1)$, $\mathcal{F} \in CB(\mathcal{M}_2, \mathcal{N}_2)$, the product

uniquely extends to a map

$$\mathcal{E} \otimes \mathcal{F} \in CB \left(\mathcal{M}_1 \bar{\otimes} \mathcal{M}_2, \mathcal{N}_1 \bar{\otimes} \mathcal{N}_2 \right)$$

3 Spanning: If $\mathcal{N} = \mathcal{L}(\mathcal{K})$, every $\mathcal{E} \in \mathrm{CB}\left(\mathcal{M}, \mathcal{L}(\mathcal{K})\right)$ can be written

$$\mathcal{E} = \mathcal{E}_1 - \mathcal{E}_2 + i(\mathcal{E}_3 - \mathcal{E}_4).$$

for some $\mathcal{E}_1, \ldots, \mathcal{E}_4 \in \text{CP}(\mathcal{M}, \mathcal{L}(\mathcal{K}))$. In particular,

$$span CP_0 (\mathcal{M}, \mathcal{L}(\mathcal{K})) = CB (\mathcal{M}, \mathcal{L}(\mathcal{K}))$$

- **Ordering:** $CP(\mathcal{M}, \mathcal{N})$ is a cone in $CB(\mathcal{M}, \mathcal{N})$, hence it induces a linear ordering in $CB(\mathcal{M}, \mathcal{N})$, which we denote by \leq
- **2 Tensoring:** If $\mathcal{E} \in CB(\mathcal{M}_1, \mathcal{N}_1)$, $\mathcal{F} \in CB(\mathcal{M}_2, \mathcal{N}_2)$, the product

$$\mathcal{E}\otimes\mathcal{F}:\mathcal{M}_1\hat{\otimes}\mathcal{N}_1\longrightarrow\mathcal{M}_2\hat{\otimes}\mathcal{N}_2$$

uniquely extends to a map

$$\mathcal{E}\otimes\mathcal{F}\in\text{CB}\left(\mathcal{M}_{1}\bar{\otimes}\mathcal{M}_{2},\mathcal{N}_{1}\bar{\otimes}\mathcal{N}_{2}\right)$$

3 Spanning: If $\mathcal{N} = \mathcal{L}(\mathcal{K})$, every $\mathcal{E} \in CB(\mathcal{M}, \mathcal{L}(\mathcal{K}))$ can be written

$$\mathcal{E} = \mathcal{E}_1 - \mathcal{E}_2 + i(\mathcal{E}_3 - \mathcal{E}_4).$$

for some $\mathcal{E}_1,\,\ldots,\,\mathcal{E}_4\in CP\left(\mathcal{M},\mathcal{L}(\mathcal{K})\right)$. In particular,

$$span CP_0 (\mathcal{M}, \mathcal{L}(\mathcal{K})) = CB (\mathcal{M}, \mathcal{L}(\mathcal{K}))$$

- **Ordering:** $CP(\mathcal{M}, \mathcal{N})$ is a cone in $CB(\mathcal{M}, \mathcal{N})$, hence it induces a linear ordering in $CB(\mathcal{M}, \mathcal{N})$, which we denote by \leq
- **2 Tensoring:** If $\mathcal{E} \in CB(\mathcal{M}_1, \mathcal{N}_1)$, $\mathcal{F} \in CB(\mathcal{M}_2, \mathcal{N}_2)$, the product

$$\mathcal{E}\otimes\mathcal{F}:\mathcal{M}_1\hat{\otimes}\mathcal{N}_1\longrightarrow\mathcal{M}_2\hat{\otimes}\mathcal{N}_2$$

uniquely extends to a map

$$\mathcal{E}\otimes\mathcal{F}\in\text{CB}\left(\mathcal{M}_{1}\bar{\otimes}\mathcal{M}_{2},\mathcal{N}_{1}\bar{\otimes}\mathcal{N}_{2}\right)$$

3 Spanning: If $\mathcal{N} = \mathcal{L}(\mathcal{K})$, every $\mathcal{E} \in \mathrm{CB}(\mathcal{M}, \mathcal{L}(\mathcal{K}))$ can be written

$$\mathcal{E} = \mathcal{E}_1 - \mathcal{E}_2 + i(\mathcal{E}_3 - \mathcal{E}_4).$$

for some $\mathcal{E}_1, \ldots, \mathcal{E}_4 \in \text{CP}(\mathcal{M}, \mathcal{L}(\mathcal{K}))$. In particular,

$$\operatorname{span}\operatorname{CP}_0\left(\mathcal{M},\mathcal{L}(\mathcal{K})\right)=\operatorname{CB}\left(\mathcal{M},\mathcal{L}(\mathcal{K})\right)$$

- **Ordering:** $CP(\mathcal{M}, \mathcal{N})$ is a cone in $CB(\mathcal{M}, \mathcal{N})$, hence it induces a linear ordering in $CB(\mathcal{M}, \mathcal{N})$, which we denote by \leq
- **2 Tensoring:** If $\mathcal{E} \in CB(\mathcal{M}_1, \mathcal{N}_1)$, $\mathcal{F} \in CB(\mathcal{M}_2, \mathcal{N}_2)$, the product

$$\mathcal{E}\otimes\mathcal{F}:\mathcal{M}_1\hat{\otimes}\mathcal{N}_1\longrightarrow\mathcal{M}_2\hat{\otimes}\mathcal{N}_2$$

uniquely extends to a map

$$\mathcal{E}\otimes\mathcal{F}\in\text{CB}\left(\mathcal{M}_{1}\bar{\otimes}\mathcal{M}_{2},\mathcal{N}_{1}\bar{\otimes}\mathcal{N}_{2}\right)$$

3 Spanning: If $\mathcal{N} = \mathcal{L}(\mathcal{K})$, every $\mathcal{E} \in CB(\mathcal{M}, \mathcal{L}(\mathcal{K}))$ can be written

Remark

If $\mathcal{M} \subset M_m$ and $\mathcal{N} \subset M_n$, then

$$CB(\mathcal{M}, \mathcal{N}) = Hom_{\mathbb{C}}(\mathcal{M}, \mathcal{N}).$$

Properties (1) and (2) are trivial, and (3) follows from Choi isomorphism

Remarks

For composite systems,

$$CB\left(\mathcal{M} \bar{\otimes} M_m, \mathcal{N} \bar{\otimes} M_n\right) = CB\left(\mathcal{M}, \mathcal{N}\right) \hat{\otimes} Hom_{\mathbb{C}}(M_m, M_n)$$
$$= CB\left(\mathcal{M}, \mathcal{N}\right) \hat{\otimes} M_{mn}$$

If

$$\begin{split} & \mathrm{S} : \mathrm{CB}\left(\mathcal{M}_{1}, \mathcal{N}_{1}\right) \to \mathrm{CB}\left(\mathcal{M}_{2}, \mathcal{N}_{2}\right) \\ & \mathrm{T} : \mathrm{Hom}_{\mathbb{C}}(M_{m_{1}}, M_{n_{1}}) \to \mathrm{Hom}_{\mathbb{C}}(M_{m_{2}}, M_{n_{2}}) \end{split}$$

are linear maps, then

$$S\otimes T: \mathrm{CB}\left(\mathcal{M}_1\bar{\otimes} M_{m_1}, \mathcal{N}_1\bar{\otimes} M_{n_1}\right) \to \mathrm{CB}\left(\mathcal{M}_2\bar{\otimes} M_{m_2}, \mathcal{N}_2\bar{\otimes} M_{n_2}\right)$$

s well-defined

Remarks

For composite systems,

$$CB\left(\mathcal{M} \bar{\otimes} M_m, \mathcal{N} \bar{\otimes} M_n\right) = CB\left(\mathcal{M}, \mathcal{N}\right) \hat{\otimes} Hom_{\mathbb{C}}(M_m, M_n)$$
$$= CB\left(\mathcal{M}, \mathcal{N}\right) \hat{\otimes} M_{mn}$$

If

$$\begin{split} S: \mathrm{CB}\left(\mathcal{M}_1, \mathcal{N}_1\right) &\to \mathrm{CB}\left(\mathcal{M}_2, \mathcal{N}_2\right) \\ T: \mathrm{Hom}_{\mathbb{C}}(M_{m_1}, M_{n_1}) &\to \mathrm{Hom}_{\mathbb{C}}(M_{m_2}, M_{n_2}) \end{split}$$

are linear maps, then

$$\mathsf{S}\otimes\mathsf{T}:\mathrm{CB}\left(\mathcal{M}_{1}\bar{\otimes}\textit{M}_{\textit{m}_{1}},\mathcal{N}_{1}\bar{\otimes}\textit{M}_{\textit{n}_{1}}\right)\rightarrow\mathrm{CB}\left(\mathcal{M}_{2}\bar{\otimes}\textit{M}_{\textit{m}_{2}},\mathcal{N}_{2}\bar{\otimes}\textit{M}_{\textit{n}_{2}}\right)$$

is well-defined

A quantum supermap must preserve quantum operations on composite systems

Definition

A linear map $S : CB(\mathcal{M}_1, \mathcal{N}_1) \to CB(\mathcal{M}_2, \mathcal{N}_2)$ is *completely positive* if $(S \otimes I_n)(CP(\mathcal{M}_1 \bar{\otimes} M_n, \mathcal{N}_1 \bar{\otimes} M_n)) \subset CP(\mathcal{M}_2 \bar{\otimes} M_n, \mathcal{N}_2 \bar{\otimes} M_n) \quad \forall n \in \mathbb{N}$ Here, $I_n : Hom_{\mathbb{C}}(M_n, M_n) \to Hom_{\mathbb{C}}(M_n, M_n)$ is the identity map

In other words, S is completely positive if $S \otimes I_n$ preserves the linear ordering \leq for all $n \in \mathbb{N}$

A quantum supermap must preserve quantum operations on composite systems

Definition

A linear map $S : CB(\mathcal{M}_1, \mathcal{N}_1) \to CB(\mathcal{M}_2, \mathcal{N}_2)$ is *completely positive* if $(S \otimes I_n)(CP(\mathcal{M}_1 \bar{\otimes} M_n, \mathcal{N}_1 \bar{\otimes} M_n)) \subset CP(\mathcal{M}_2 \bar{\otimes} M_n, \mathcal{N}_2 \bar{\otimes} M_n) \quad \forall n \in \mathbb{N}$ Here, $I_n : \operatorname{Hom}_{\mathbb{C}}(M_n, M_n) \to \operatorname{Hom}_{\mathbb{C}}(M_n, M_n)$ is the identity map

In other words, S is completely positive if $S \otimes I_n$ preserves the linear ordering \leq for all $n \in \mathbb{N}$

Properties of supermaps: Complete positivity

A quantum supermap must preserve quantum operations on composite systems

Definition

A linear map $S : CB(\mathcal{M}_1, \mathcal{N}_1) \to CB(\mathcal{M}_2, \mathcal{N}_2)$ is completely positive if $(S \otimes I_n)(CP(\mathcal{M}_1 \bar{\otimes} M_n, \mathcal{N}_1 \bar{\otimes} M_n)) \subset CP(\mathcal{M}_2 \bar{\otimes} M_n, \mathcal{N}_2 \bar{\otimes} M_n) \quad \forall n \in \mathbb{N}$

Here, $I_n : \operatorname{Hom}_{\mathbb{C}}(M_n, M_n) \to \operatorname{Hom}_{\mathbb{C}}(M_n, M_n)$ is the identity map

In other words, S is completely positive if $S \otimes I_n$ preserves the linear ordering \leq for all $n \in \mathbb{N}$

A quantum supermap S : $CB(\mathcal{M}_1, \mathcal{N}_1) \to CB(\mathcal{M}_2, \mathcal{N}_2)$ must be continuous in a suitable sense

... But, if dim $\mathcal{M}_i = \infty$ or dim $\mathcal{N}_i = \infty$, many 'natural' topologies are available on the space CB $(\mathcal{M}, \mathcal{N})$ (e. g. pointwise uniform, strong, weak* or weak convergence...)

... So we avoid reference to a particular topology, and require normality with respect to a single suitable notion of increasing sequences in $CB(\mathcal{M}, \mathcal{N})$

A quantum supermap S : $CB(\mathcal{M}_1, \mathcal{N}_1) \to CB(\mathcal{M}_2, \mathcal{N}_2)$ must be continuous in a suitable sense

... But, if dim $\mathcal{M}_i = \infty$ or dim $\mathcal{N}_i = \infty$, many 'natural' topologies are available on the space CB $(\mathcal{M}, \mathcal{N})$ (e. g. pointwise uniform, strong, weak* or weak convergence...)

... So we avoid reference to a particular topology, and require normality with respect to a single suitable notion of increasing sequences in CB $(\mathcal{M}, \mathcal{N})$

A quantum supermap S : CB $(\mathcal{M}_1, \mathcal{N}_1) \to$ CB $(\mathcal{M}_2, \mathcal{N}_2)$ must be continuous in a suitable sense

... But, if dim $\mathcal{M}_i = \infty$ or dim $\mathcal{N}_i = \infty$, many 'natural' topologies are available on the space CB $(\mathcal{M}, \mathcal{N})$ (e. g. pointwise uniform, strong, weak* or weak convergence...)

... So we avoid reference to a particular topology, and require normality with respect to a single suitable notion of increasing sequences in $CB(\mathcal{M}, \mathcal{N})$

Increasing sequences in $CB(\mathcal{M}, \mathcal{N})$

Definition

A sequence $\{\mathcal{E}_n\}_{n\in\mathbb{N}}$ in $\mathrm{CB}\left(\mathcal{M},\mathcal{N}\right)$ is

- *CP-increasing* if $0 \leq \mathcal{E}_m \leq \mathcal{E}_n$ for $m \leq n$
- *CP-bounded* if $\exists \mathcal{F} \in \operatorname{CP}(\mathcal{M}, \mathcal{N})$ such that $\mathcal{E}_n \preceq \mathcal{F}$ for all n

Proposition

If the sequence $\{\mathcal{E}_n\}_{n\in\mathbb{N}}$ in CB $(\mathcal{M},\mathcal{N})$ is CP-increasing and CP-bounded, then $\exists ! \ \mathcal{E} \in \operatorname{CP}(\mathcal{M},\mathcal{N})$ such that

$$\underset{n\to\infty}{\operatorname{wk}^*\text{-lim}}\,\mathcal{E}_n(A)=\mathcal{E}(A) \qquad \forall A\in\mathcal{M}$$

Increasing sequences in CB $(\mathcal{M}, \mathcal{N})$

Definition

A sequence $\{\mathcal{E}_n\}_{n\in\mathbb{N}}$ in CB $(\mathcal{M},\mathcal{N})$ is

- *CP-increasing* if $0 \leq \mathcal{E}_m \leq \mathcal{E}_n$ for $m \leq n$
- *CP-bounded* if $\exists \mathcal{F} \in \operatorname{CP}(\mathcal{M}, \mathcal{N})$ such that $\mathcal{E}_n \preceq \mathcal{F}$ for all n

Proposition

If the sequence $\{\mathcal{E}_n\}_{n\in\mathbb{N}}$ in $\mathrm{CB}\,(\mathcal{M},\mathcal{N})$ is CP-increasing and CP-bounded, then $\exists !\ \mathcal{E}\in\mathrm{CP}\,(\mathcal{M},\mathcal{N})$ such that

$$\underset{n\to\infty}{\operatorname{wk}} *-\underset{n\to\infty}{\lim} \, \mathcal{E}_n(A) = \mathcal{E}(A) \qquad \forall A \in \mathcal{M}$$

Increasing sequences in CB $(\mathcal{M}, \mathcal{N})$

Notation

If $\{\mathcal{E}_n\}_{n\in\mathbb{N}}$ is a CP-increasing and CP-bounded sequence, and $\mathcal{E}\in \operatorname{CP}(\mathcal{M},\mathcal{N})$ is such that $\operatorname{wk*-lim}_{n\to\infty}\mathcal{E}_n(A)=\mathcal{E}(A)\ \forall A\in\mathcal{M}$, we write $\mathcal{E}_n \pitchfork \mathcal{E}$

Example (Kraus Theorem)

Suppose $\mathcal{M} \subset \mathcal{L}(\mathcal{H})$, $\mathcal{N} = \mathcal{L}(\mathcal{K})$. For all $\mathcal{E} \in \operatorname{CP}(\mathcal{M}, \mathcal{L}(\mathcal{K})) \exists$ a sequence $\{E_k\}_{k \in \mathbb{N}}$ in $\mathcal{L}(\mathcal{K}, \mathcal{H})$ such that

$$\sum_{k=0}^{n} E_k^* \odot_{\mathcal{M}} E_k \uparrow \mathcal{E}$$

Increasing sequences in CB $(\mathcal{M}, \mathcal{N})$

Notation

If $\{\mathcal{E}_n\}_{n\in\mathbb{N}}$ is a CP-increasing and CP-bounded sequence, and $\mathcal{E}\in\operatorname{CP}(\mathcal{M},\mathcal{N})$ is such that $\operatorname{wk}^*\operatorname{-lim}_{n\to\infty}\mathcal{E}_n(A)=\mathcal{E}(A)\ \forall A\in\mathcal{M}$, we write $\mathcal{E}_n \pitchfork \mathcal{E}$

Example (Kraus Theorem)

Suppose $\mathcal{M} \subset \mathcal{L}(\mathcal{H})$, $\mathcal{N} = \mathcal{L}(\mathcal{K})$. For all $\mathcal{E} \in \operatorname{CP}(\mathcal{M}, \mathcal{L}(\mathcal{K})) \exists$ a sequence $\{E_k\}_{k \in \mathbb{N}}$ in $\mathcal{L}(\mathcal{K}, \mathcal{H})$ such that

$$\sum_{k=0}^n E_k^* \odot_{\mathcal{M}} E_k \Uparrow \mathcal{E}$$

Definition

A linear map

$$S: CB(\mathcal{M}_1, \mathcal{N}_1) \to CB(\mathcal{M}_2, \mathcal{N}_2)$$

is *normal* if for all sequences $\{\mathcal{E}_n\}_{n\in\mathbb{N}}$ we have

$$\mathcal{E}_n \uparrow \mathcal{E}$$
 implies $S(\mathcal{E}_n) \uparrow S(\mathcal{E})$

Remark

A normal map

$$\mathsf{S}:\mathsf{CB}\left(\mathcal{M}_{1},\mathcal{L}\left(\mathcal{K}_{1}
ight)
ight)
ightarrow\mathsf{CB}\left(\mathcal{M}_{2},\mathcal{L}\left(\mathcal{K}_{2}
ight)
ight)$$

is completely defined by its action on elementary tensors $E^* \odot_{\mathcal{M}_1} F$

Definition

A linear map

$$S: CB(\mathcal{M}_1, \mathcal{N}_1) \to CB(\mathcal{M}_2, \mathcal{N}_2)$$

is *normal* if for all sequences $\{\mathcal{E}_n\}_{n\in\mathbb{N}}$ we have

$$\mathcal{E}_n \uparrow \mathcal{E}$$
 implies $S(\mathcal{E}_n) \uparrow S(\mathcal{E})$

Remark

A normal map

$$S: \mathrm{CB}\left(\mathcal{M}_{1}, \mathcal{L}\left(\mathcal{K}_{1}\right)\right) \to \mathrm{CB}\left(\mathcal{M}_{2}, \mathcal{L}\left(\mathcal{K}_{2}\right)\right)$$

is completely defined by its action on elementary tensors $E^* \odot_{\mathcal{M}_1} F$

Definition

A linear map

$$S: \mathrm{CB}\left(\mathcal{M}_1, \mathcal{N}_1\right) \to \mathrm{CB}\left(\mathcal{M}_2, \mathcal{N}_2\right)$$

is a quantum supermap if

- (i) S is completely positive
- (ii) S is normal.

Definition

A quantum supermap S is deterministic if

$$S(CP_1(\mathcal{M}_1, \mathcal{N}_1)) \subset CP_1(\mathcal{M}_2, \mathcal{N}_2)$$

Definition

A linear map

$$S: \mathrm{CB}\left(\mathcal{M}_1, \mathcal{N}_1\right) \to \mathrm{CB}\left(\mathcal{M}_2, \mathcal{N}_2\right)$$

is a quantum supermap if

- (i) S is completely positive
- (ii) S is normal.

Definition

A quantum supermap S is deterministic if

$$S(CP_1(\mathcal{M}_1,\mathcal{N}_1)) \subset CP_1(\mathcal{M}_2,\mathcal{N}_2)$$

The set of quantum supermaps is ordered: given two quantum supermaps S, T acting in the same CB spaces, we will write

 $S \ll T$ iff T - S is a quantum supermap

Definition

A quantum supermap S is *probabilistic* if there exists a deterministic quantum supermap T such that

$$S \ll T$$

The set of quantum supermaps is ordered: given two quantum supermaps S, T acting in the same CB spaces, we will write

 $S \ll T$ iff T - S is a quantum supermap

Definition

A quantum supermap S is *probabilistic* if there exists a deterministic quantum supermap T such that

$$S\ll T\,$$

Examples

Example: Amplification

If V is a Hilbert space, then

$$\begin{array}{ccc} \Pi_{\mathcal{V}} : & CB\left(\mathcal{M}, \mathcal{N}\right) & \longrightarrow & CB\left(\mathcal{M} \bar{\otimes} \mathcal{L}(\mathcal{V}), \mathcal{N} \bar{\otimes} \mathcal{L}(\mathcal{V})\right) \\ \mathcal{E} & \longmapsto & \mathcal{E} \otimes \mathcal{I}_{\mathcal{V}} \end{array}$$

is a deterministic quantum supermap

Example: Concatenation

If
$$A \in CP_0(\mathcal{N}_1, \mathcal{N}_2)$$
, $\mathcal{B} \in CP_0(\mathcal{M}_2, \mathcal{M}_1)$, then

$$\begin{array}{ccc} \mathsf{C}_{\mathcal{A},\mathcal{B}} : & \mathsf{CB}\left(\mathcal{M}_1,\mathcal{N}_1\right) & \longrightarrow & \mathsf{CB}\left(\mathcal{M}_2,\mathcal{N}_2\right) \\ \mathcal{E} & \longmapsto & \mathcal{A}\mathcal{E}\mathcal{B} \end{array}$$

is a probabilistic quantum supermap

Examples

Example: Amplification

If V is a Hilbert space, then

$$\begin{array}{ccc} \Pi_{\mathcal{V}}: & CB\left(\mathcal{M}, \mathcal{N}\right) & \longrightarrow & CB\left(\mathcal{M} \bar{\otimes} \mathcal{L}(\mathcal{V}), \mathcal{N} \bar{\otimes} \mathcal{L}(\mathcal{V})\right) \\ \mathcal{E} & \longmapsto & \mathcal{E} \otimes \mathcal{I}_{\mathcal{V}} \end{array}$$

is a deterministic quantum supermap

Example: Concatenation

If $\mathcal{A}\in CP_0\left(\mathcal{N}_1,\mathcal{N}_2\right)$, $\mathcal{B}\in CP_0\left(\mathcal{M}_2,\mathcal{M}_1\right)$, then

$$\begin{array}{ccc} C_{\mathcal{A},\mathcal{B}}: & \mathrm{CB}\left(\mathcal{M}_1,\mathcal{N}_1\right) & \longrightarrow & \mathrm{CB}\left(\mathcal{M}_2,\mathcal{N}_2\right) \\ \mathcal{E} & \longmapsto & \mathcal{A}\mathcal{E}\mathcal{B} \end{array}$$

is a probabilistic quantum supermap

Theorem (Dilation theorem)

A linear map

$$S: \mathrm{CB}\left(\mathcal{M}_{1}, \mathcal{L}\left(\mathcal{K}_{1}\right)\right) \to \mathrm{CB}\left(\mathcal{M}_{2}, \mathcal{L}\left(\mathcal{K}_{2}\right)\right)$$

is a deterministic supermap iff there exist a triple (V, V, \mathcal{F}) , where

- V is a Hilbert space
- $V: \mathcal{K}_2 \to \mathcal{K}_1 \otimes \mathcal{V}$ is an isometry
- $\mathcal{F}: \mathcal{M}_2 \to \mathcal{M}_1 \bar{\otimes} \mathcal{L}(\mathcal{V})$ is a quantum channel

such that

$$[S(\mathcal{E})](A) = V^* [(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})\mathcal{F}(A)] V$$

for all $\mathcal{E}\in \text{CB}\left(\mathcal{M}_{1},\mathcal{L}\left(\mathcal{K}_{1}\right)\right)$ and $A\in\mathcal{M}_{2}$

• The triple $(\mathcal{V}, \ \mathcal{V}, \ \mathcal{F})$ can always be chosen in a way that $\mathcal{V} = \overline{\operatorname{span}} \ \{ (u^* \otimes I_{\mathcal{V}}) \ Vv \mid u \in \mathcal{K}_1 \,, \ v \in \mathcal{K}_2 \}$

② In this case, if $(\mathcal{V}', \mathcal{V}', \mathcal{F}')$ is another dilation, then $\exists!$ isometry $W: \mathcal{V} \longrightarrow \mathcal{V}'$ such that

$$V' = (I_{\mathcal{K}_1} \otimes W) V$$

and

(minimal dilation)

$$\mathcal{F}(A) = (I_{\mathcal{M}_1} \otimes W^*) \mathcal{F}'(A) (I_{\mathcal{M}_1} \otimes W) \quad \forall A \in \mathcal{M}_2$$

• The triple (V, V, F) can always be chosen in a way that

$$\mathcal{V} = \overline{\text{span}} \, \left\{ \left(u^* \otimes \mathit{I}_{\mathcal{V}} \right) \mathit{Vv} \mid u \in \mathcal{K}_1 \, , \, v \in \mathcal{K}_2 \right\}$$

(minimal dilation)

In this case, if $(\mathcal{V}', V', \mathcal{F}')$ is another dilation, then $\exists !$ isometry $W: \mathcal{V} \longrightarrow \mathcal{V}'$ such that

$$V' = (I_{\mathcal{K}_1} \otimes W)V$$

and

$$\mathcal{F}(A) = (I_{\mathcal{M}_1} \otimes W^*) \mathcal{F}'(A) (I_{\mathcal{M}_1} \otimes W) \quad \forall A \in \mathcal{M}_2$$

Setting

$$\mathcal{A} = V^* \odot_{\mathcal{L}(\mathcal{K}_1 \otimes \mathcal{V})} V$$

we have that S is the composition

$$S = C_{\mathcal{A},\mathcal{F}} \circ \Pi_{\mathcal{V}}$$

In the Schrödinger (predual) picture

$$[S(\mathcal{E})]_*(\rho) = \mathcal{F}_* [(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_* (V \rho V^*)]$$

for all $\mathcal{E} \in CB\left(\mathcal{M}_1, \mathcal{L}\left(\mathcal{K}_1\right)\right)$ and $\rho \in \mathcal{L}\left(\mathcal{K}_2\right)_* = \mathcal{T}\left(\mathcal{K}_2\right)$

Setting

$$\mathcal{A} = V^* \odot_{\mathcal{L}(\mathcal{K}_1 \otimes \mathcal{V})} V$$

we have that S is the composition

$$S = C_{\mathcal{A},\mathcal{F}} \circ \Pi_{\mathcal{V}}$$

In the Schrödinger (predual) picture

$$[S(\mathcal{E})]_*(\rho) = \mathcal{F}_* [(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_* (V \rho V^*)]$$

for all $\mathcal{E} \in \mathrm{CB}\left(\mathcal{M}_1, \mathcal{L}\left(\mathcal{K}_1\right)\right)$ and $\rho \in \mathcal{L}\left(\mathcal{K}_2\right)_* = \mathcal{T}\left(\mathcal{K}_2\right)$

- $\ \, \ \,$ Taking $\mathcal{M}_1=\mathcal{M}_2=\mathbb{C},$ one gets Stinespring Theorem for normal CP maps
- $\begin{tabular}{ll} \hline \textbf{6} & Taking $\mathcal{K}_1=\mathcal{K}_2=\mathbb{C}$, one gets Stinespring Theorem for normal CP maps in the Schrödinger picture \\ \hline \end{tabular}$

- $\ \, \ \,$ Taking $\mathcal{M}_1=\mathcal{M}_2=\mathbb{C},$ one gets Stinespring Theorem for normal CP maps
- $\begin{tabular}{ll} \hline \textbf{6} & Taking $\mathcal{K}_1=\mathcal{K}_2=\mathbb{C}$, one gets Stinespring Theorem for normal CP maps in the Schrödinger picture \\ \hline \end{tabular}$

Dilation of probabilistic supermaps

Theorem (Radon-Nikodym theorem for supermaps)

Suppose $S, T : CB(\mathcal{M}_1, \mathcal{L}(\mathcal{K}_1)) \to CB(\mathcal{M}_2, \mathcal{L}(\mathcal{K}_2))$ are quantum supermaps, with $T \ll S$.

Suppose S is deterministic, and let $(\mathcal{V}, V, \mathcal{F})$ be its minimal dilation. Then $\exists ! \ \mathcal{G} \in CP_0\left(\mathcal{M}_2, \mathcal{M}_1 \bar{\otimes} \mathcal{L}(\mathcal{V})\right)$, with

$$\mathcal{G} \preceq \mathcal{F}$$
,

such that

$$[\mathsf{T}(\mathcal{E})](A) = V^*[(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})\mathcal{G}(A)]V$$

for all $\mathcal{E}\in \text{CB}\left(\mathcal{M}_1,\mathcal{L}\left(\mathcal{K}_1\right)\right)$ and $A\in\mathcal{M}_2$

- X : space of outcomes (discrete)
- $\mathcal{M}_1 = \ell^{\infty}(X)$: complex bounded functions (sequences) on X
- $\operatorname{CP}_1(\mathcal{M}_1, \mathcal{L}(\mathcal{K}_1)) : \mathcal{L}(\mathcal{K}_1)$ -valued POVMs on X

Let $(\mathcal{V}, \mathcal{V}, \mathcal{F})$ be a dilation of a deterministic supermap

$$S: CB\left(\ell^{\infty}(X), \mathcal{L}\left(\mathcal{K}_{1}\right)\right) \longrightarrow CB\left(\mathcal{L}\left(\mathcal{H}_{2}\right), \mathcal{L}\left(\mathcal{K}_{2}\right)\right)$$

For $x \in X$, set

$$\mathcal{F}_{X*}: \ \mathcal{T}(\mathcal{V}) \longrightarrow \mathcal{T}(\mathcal{H}_2) \ \sigma \longmapsto \mathcal{F}_*(\delta_X \sigma)$$

Then

$$[S(\mathcal{E})]_*(\rho) = \sum_{X \in X} \mathcal{F}_{X*}[(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_*(V \rho V^*)_X]$$

- X : space of outcomes (discrete)
- $\mathcal{M}_1 = \ell^{\infty}(X)$: complex bounded functions (sequences) on X
- $\operatorname{CP}_1(\mathcal{M}_1, \mathcal{L}(\mathcal{K}_1)) : \mathcal{L}(\mathcal{K}_1)$ -valued POVMs on X

If $\mathcal{E} \in \mathrm{CP}_1\left(\ell^\infty(X),\mathcal{L}(\mathcal{K})\right)$, then the map

$$P: X \longrightarrow \mathcal{L}(\mathcal{K})$$
$$x \longmapsto \mathcal{E}(\delta_x)$$

is a POVM, and

$$\mathcal{E}(f) = \sum_{X \in X} f_X P_X$$

 $x \in X$

- X : space of outcomes (discrete)
- $\mathcal{M}_1 = \ell^{\infty}(X)$: complex bounded functions (sequences) on X
- $\operatorname{CP}_1(\mathcal{M}_1, \mathcal{L}(\mathcal{K}_1)) : \mathcal{L}(\mathcal{K}_1)$ -valued POVMs on X

Let (V, V, \mathcal{F}) be a dilation of a deterministic supermap

$$S: CB\left(\ell^{\infty}(X), \mathcal{L}\left(\mathcal{K}_{1}\right)\right) \longrightarrow CB\left(\mathcal{L}\left(\mathcal{H}_{2}\right), \mathcal{L}\left(\mathcal{K}_{2}\right)\right)$$

For $x \in X$, set

$$\mathcal{F}_{X*}: \ \mathcal{T}(\mathcal{V}) \longrightarrow \mathcal{T}(\mathcal{H}_2) \ \sigma \longmapsto \mathcal{F}_*(\delta_X \sigma)$$

Then

$$[S(\mathcal{E})]_*(\rho) = \sum_{X \in X} \mathcal{F}_{X*}[(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_*(V \rho V^*)_X]$$

- X : space of outcomes (discrete)
- $\mathcal{M}_1 = \ell^{\infty}(X)$: complex bounded functions (sequences) on X
- $\operatorname{CP}_1(\mathcal{M}_1, \mathcal{L}(\mathcal{K}_1)) : \mathcal{L}(\mathcal{K}_1)$ -valued POVMs on X

Let (V, V, \mathcal{F}) be a dilation of a deterministic supermap

$$S: CB\left(\ell^{\infty}(X), \mathcal{L}\left(\mathcal{K}_{1}\right)\right) \longrightarrow CB\left(\mathcal{L}\left(\mathcal{H}_{2}\right), \mathcal{L}\left(\mathcal{K}_{2}\right)\right)$$

Note that we have

$$\mathcal{F} \in \operatorname{CP}_1\left(\mathcal{L}\left(\mathcal{H}_2\right), \ell^\infty(X) \bar{\otimes} \mathcal{L}(\mathcal{V})\right)$$

hence

$$\mathcal{F}_*:\ell^1(X;\mathcal{T}(\mathcal{V}))\longrightarrow \mathcal{T}(\mathcal{H}_2)$$

- X : space of outcomes (discrete)
- $\mathcal{M}_1 = \ell^{\infty}(X)$: complex bounded functions (sequences) on X
- $\operatorname{CP}_1(\mathcal{M}_1, \mathcal{L}(\mathcal{K}_1)) : \mathcal{L}(\mathcal{K}_1)$ -valued POVMs on X

Let (V, V, \mathcal{F}) be a dilation of a deterministic supermap

$$S: CB\left(\ell^{\infty}(X), \mathcal{L}\left(\mathcal{K}_{1}\right)\right) \longrightarrow CB\left(\mathcal{L}\left(\mathcal{H}_{2}\right), \mathcal{L}\left(\mathcal{K}_{2}\right)\right)$$

Note that we have

$$\mathcal{F} \in \text{CP}_1\left(\mathcal{L}\left(\mathcal{H}_2\right), \ell^\infty(X; \mathcal{L}(\mathcal{V}))\right)$$

hence

$$\mathcal{F}_{*}:\ell^{1}(X;\mathcal{T}\left(\mathcal{V}\right))\longrightarrow\mathcal{T}\left(\mathcal{H}_{2}\right)$$

- X : space of outcomes (discrete)
- $\mathcal{M}_1 = \ell^{\infty}(X)$: complex bounded functions (sequences) on X
- $\operatorname{CP}_1(\mathcal{M}_1, \mathcal{L}(\mathcal{K}_1)) : \mathcal{L}(\mathcal{K}_1)$ -valued POVMs on X

Let (V, V, \mathcal{F}) be a dilation of a deterministic supermap

$$S: CB\left(\ell^{\infty}(X), \mathcal{L}\left(\mathcal{K}_{1}\right)\right) \longrightarrow CB\left(\mathcal{L}\left(\mathcal{H}_{2}\right), \mathcal{L}\left(\mathcal{K}_{2}\right)\right)$$

For $x \in X$, set

$$\mathcal{F}_{X*}: \ \mathcal{T}(\mathcal{V}) \longrightarrow \ \mathcal{T}(\mathcal{H}_2)$$
 $\sigma \longmapsto \mathcal{F}_*(\delta_X \sigma)$

Then

$$[S(\mathcal{E})]_*(\rho) = \sum_{x \in X} \mathcal{F}_{X*}[(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_*(V \rho V^*)_X]$$

- X : space of outcomes (discrete)
- $\mathcal{M}_1 = \ell^{\infty}(X)$: complex bounded functions (sequences) on X
- $\operatorname{CP}_1(\mathcal{M}_1, \mathcal{L}(\mathcal{K}_1)) : \mathcal{L}(\mathcal{K}_1)$ -valued POVMs on X

Let (V, V, \mathcal{F}) be a dilation of a deterministic supermap

$$S: CB\left(\ell^{\infty}(X), \mathcal{L}\left(\mathcal{K}_{1}\right)\right) \longrightarrow CB\left(\mathcal{L}\left(\mathcal{H}_{2}\right), \mathcal{L}\left(\mathcal{K}_{2}\right)\right)$$

For $x \in X$, set

$$\begin{array}{ccc} \mathcal{F}_{X*}: & \mathcal{T}(\mathcal{V}) & \longrightarrow & \mathcal{T}(\mathcal{H}_2) \\ & \sigma & \longmapsto & \mathcal{F}_*(\delta_X \sigma) \end{array}$$

Then

$$[\mathsf{S}(\mathcal{E})]_*(\rho) = \sum_{\mathsf{X} \in \mathsf{X}} \mathcal{F}_{\mathsf{X} *}[(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_* (\mathsf{V} \rho \mathsf{V}^*)_{\mathsf{X}}]$$

- X : space of outcomes (discrete)
- $\mathcal{M}_1 = \ell^{\infty}(X)$: complex bounded functions (sequences) on X
- $\operatorname{CP}_1(\mathcal{M}_1, \mathcal{L}(\mathcal{K}_1)) : \mathcal{L}(\mathcal{K}_1)$ -valued POVMs on X

Let (V, V, \mathcal{F}) be a dilation of a deterministic supermap

$$S: CB\left(\ell^{\infty}(X), \mathcal{L}\left(\mathcal{K}_{1}\right)\right) \longrightarrow CB\left(\mathcal{L}\left(\mathcal{H}_{2}\right), \mathcal{L}\left(\mathcal{K}_{2}\right)\right)$$

For $x \in X$, set

$$\begin{array}{ccc} \mathcal{F}_{X*}: & \mathcal{T}(\mathcal{V}) & \longrightarrow & \mathcal{T}(\mathcal{H}_2) \\ & \sigma & \longmapsto & \mathcal{F}_*(\delta_X \, \sigma) \end{array}$$

Then

$$[\mathsf{S}(\mathcal{E})]_*(\rho) = \sum_{\mathsf{x} \in \mathsf{X}} \mathcal{F}_{\mathsf{x} *}[(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_* (\textcolor{red}{\mathbf{V} \rho \, \mathbf{V}^*})_{\mathsf{x}}]$$

Transform the input system \mathcal{K}_2 into the composite system $\mathcal{K}_1 \otimes \mathcal{V}$

- X : space of outcomes (discrete)
- $\mathcal{M}_1 = \ell^{\infty}(X)$: complex bounded functions (sequences) on X
- $\operatorname{CP}_1(\mathcal{M}_1, \mathcal{L}(\mathcal{K}_1)) : \mathcal{L}(\mathcal{K}_1)$ -valued POVMs on X

Let (V, V, \mathcal{F}) be a dilation of a deterministic supermap

$$S: CB\left(\ell^{\infty}(X), \mathcal{L}\left(\mathcal{K}_{1}\right)\right) \longrightarrow CB\left(\mathcal{L}\left(\mathcal{H}_{2}\right), \mathcal{L}\left(\mathcal{K}_{2}\right)\right)$$

For $x \in X$, set

$$\mathcal{F}_{X*}: \ \mathcal{T}(\mathcal{V}) \longrightarrow \ \mathcal{T}(\mathcal{H}_2)$$
 $\sigma \longmapsto \mathcal{F}_*(\delta_X \sigma)$

Then

$$[\mathsf{S}(\mathcal{E})]_*(\rho) = \sum_{\mathsf{x} \in \mathsf{X}} \mathcal{F}_{\mathsf{x} *}[(\underline{\mathcal{E}} \otimes \mathcal{I}_{\mathcal{V}})_* (\mathsf{V} \rho \mathsf{V}^*)_{\mathsf{x}}]$$

Measure the POVM \mathcal{E} on \mathcal{K}_1 , thus obtaining the outcome $x \in X$

- X : space of outcomes (discrete)
- $\mathcal{M}_1 = \ell^{\infty}(X)$: complex bounded functions (sequences) on X
- $\operatorname{CP}_1(\mathcal{M}_1, \mathcal{L}(\mathcal{K}_1)) : \mathcal{L}(\mathcal{K}_1)$ -valued POVMs on X

Let (V, V, \mathcal{F}) be a dilation of a deterministic supermap

$$S: CB\left(\ell^{\infty}(X), \mathcal{L}\left(\mathcal{K}_{1}\right)\right) \longrightarrow CB\left(\mathcal{L}\left(\mathcal{H}_{2}\right), \mathcal{L}\left(\mathcal{K}_{2}\right)\right)$$

For $x \in X$, set

$$\begin{array}{cccc}
\mathcal{F}_{X*}: & \mathcal{T}(\mathcal{V}) & \longrightarrow & \mathcal{T}(\mathcal{H}_2) \\
& \sigma & \longmapsto & \mathcal{F}_*(\delta_X \sigma)
\end{array}$$

Then

$$[S(\mathcal{E})]_*(\rho) = \sum_{\mathbf{X} \in X} \mathcal{F}_{\mathbf{X} *}[(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_* (V \rho V^*)_{\mathbf{X}}]$$

Conditionally on the outcome x, apply the channel \mathcal{F}_{x*} on the ancilla \mathcal{V} , thus converting it into the output \mathcal{H}_2

Index

- Quantum operations
 - Definition
 - Dilation of quantum operations
- Quantum supermaps
 - Definition
 - Dilation of quantum supermaps
 - Examples
- Superinstruments
 - Definition
 - Dilation of superinstruments
 - Examples
- 4 Conclusions

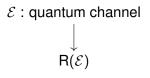
Motivation

A quantum superinstrument R describes a measurement process of quantum channels

A quantum superinstrument R describes a measurement process of quantum channels

 ${\mathcal E}$: quantum channel

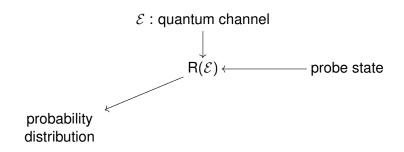
A quantum superinstrument R describes a measurement process of quantum channels



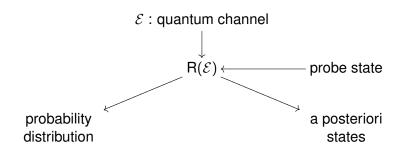
A quantum superinstrument R describes a measurement process of quantum channels

 \mathcal{E} : quantum channel $\downarrow \\ \mathsf{R}(\mathcal{E}) \longleftarrow \mathsf{probe\ state}$

A quantum superinstrument R describes a measurement process of quantum channels



A quantum superinstrument R describes a measurement process of quantum channels



- ullet CP₁ $(\mathcal{M}_1, \mathcal{L}(\mathcal{K}_1))$: channels to be measured
- ullet $\mathcal{L}\left(\mathcal{K}_{2}\right)_{*}=\mathcal{T}\left(\mathcal{K}_{2}\right)$: initial probe states
- M_{2∗}: final probe states
- (Ω, A) : measurable set of outcomes
- $\mathcal{M}\left(\Omega; CP_0\left(\mathcal{M}_2, \mathcal{L}\left(\mathcal{K}_2\right)\right)\right)$: quantum instruments on the probes

A quantum superinstrument is a map

$$\mathsf{R}:\mathsf{CP}_{1}\left(\mathcal{M}_{1},\mathcal{L}\left(\mathcal{K}_{1}\right)\right)\longrightarrow\mathcal{M}\left(\Omega;\mathsf{CP}_{0}\left(\mathcal{M}_{2},\mathcal{L}\left(\mathcal{K}_{2}\right)\right)\right)$$

To each channel $\mathcal{E}\in \mathrm{CP}_1\left(\mathcal{M}_1,\mathcal{L}\left(\mathcal{K}_1\right)\right)$ it associates the instrument

$$A \ni B \longmapsto \mathsf{R}_{B}(\mathcal{E}) \in \mathsf{CP}_{0}\left(\mathcal{M}_{2}, \mathcal{L}\left(\mathcal{K}_{2}\right)\right)$$

- $CP_1(\mathcal{M}_1, \mathcal{L}(\mathcal{K}_1))$: channels to be measured
- ullet $\mathcal{L}\left(\mathcal{K}_{2}\right)_{*}=\mathcal{T}\left(\mathcal{K}_{2}\right)$: initial probe states

Recall that (in the Heisenberg picture) a classical quantum instrument is just a map $\mathcal{J}: \mathcal{A} \to \mathrm{CP}_0\left(\mathcal{M}, \mathcal{L}(\mathcal{K})\right)$

which is

weak*-additive:

$$\mathcal{J}_{B}(A) = \underset{n \to \infty}{\text{wk*-lim}} \sum_{i=1}^{n} \mathcal{J}_{B_{i}}(A) \quad \forall A \in \mathcal{M} \quad \text{if } B_{i} \cap B_{j} = \emptyset \ \forall i \neq j$$

normalized:

$$\mathcal{J}_{\Omega}(I_{\mathcal{M}})=I_{\mathcal{K}}$$

- ullet CP₁ $(\mathcal{M}_1, \mathcal{L}(\mathcal{K}_1))$: channels to be measured
- ullet $\mathcal{L}\left(\mathcal{K}_{2}\right)_{*}=\mathcal{T}\left(\mathcal{K}_{2}\right)$: initial probe states
- M_{2∗}: final probe states
- (Ω, A) : measurable set of outcomes
- $\mathcal{M}(\Omega; CP_0(\mathcal{M}_2, \mathcal{L}(\mathcal{K}_2)))$: quantum instruments on the probes

A quantum superinstrument is a map

$$\mathsf{R}: \mathsf{CP}_1\left(\mathcal{M}_1, \mathcal{L}\left(\mathcal{K}_1\right)\right) \longrightarrow \mathcal{M}\left(\Omega; \mathsf{CP}_0\left(\mathcal{M}_2, \mathcal{L}\left(\mathcal{K}_2\right)\right)\right)$$

To each channel $\mathcal{E} \in \text{CP}_1\left(\mathcal{M}_1, \mathcal{L}\left(\mathcal{K}_1\right)\right)$ it associates the instrument

$$\mathcal{A}\ni B\longmapsto \mathsf{R}_{\mathcal{B}}(\mathcal{E})\in \mathsf{CP}_{0}\left(\mathcal{M}_{2},\mathcal{L}\left(\mathcal{K}_{2}\right)\right)$$

Definition of superinstruments

Definition

Let (Ω, \mathcal{A}) be a measurable space. Suppose R is a map

$$\begin{array}{ccc} \mathsf{R}: & \mathcal{A} & \longrightarrow & \mathsf{Hom}_{\mathbb{C}}(\mathsf{CB}\left(\mathcal{M}_{1}, \mathcal{N}_{1}\right); \mathsf{CB}\left(\mathcal{M}_{2}, \mathcal{N}_{2}\right)) \\ & \mathcal{B} & \longmapsto & \mathsf{R}_{\mathcal{B}} \end{array}$$

We say that R is a *quantum superinstrument* if

- (i) R_B is a quantum supermap for all $B \in \mathcal{A}$
- (ii) R_{Ω} is deterministic
- (iii) if $B = \bigcup_{i=1}^{\infty} B_i$ with $B_i \cap B_j = \emptyset$ for $i \neq j$, then

$$[\mathsf{R}_{B}(\mathcal{E})](A) = \underset{n \to \infty}{\text{wk*-lim}} \sum_{i=1}^{n} [\mathsf{R}_{B_{i}}(\mathcal{E})](A)$$

for all $\mathcal{E}\in \text{CB}\left(\mathcal{M}_{1},\mathcal{N}_{1}\right)$ and $A\in\mathcal{M}_{2}$

Dilation of superinstruments

Theorem (Dilation of quantum superinstruments)

Suppose that

$$\mathsf{R}:\mathcal{A}\rightarrow \mathsf{Hom}_{\mathbb{C}}(\mathsf{CB}\left(\mathcal{M}_{1},\mathcal{L}\left(\mathcal{K}_{1}\right)\right);\mathsf{CB}\left(\mathcal{M}_{2},\mathcal{L}\left(\mathcal{K}_{2}\right)\right))$$

is a quantum superinstrument. Then there exist a Hilbert space $\mathcal V$, an isometry $V:\mathcal K_2\to\mathcal K_1\otimes\mathcal V$ and a quantum instrument

$$\mathcal{J} \in \mathcal{M} (\Omega; \operatorname{CP}_0 (\mathcal{M}_2, \mathcal{M}_1 \bar{\otimes} \mathcal{L}(\mathcal{V})))$$

such that

$$[\mathsf{R}_{\mathcal{B}}(\mathcal{E})](A) = V^*[(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})\mathcal{J}_{\mathcal{B}}(A)]V \quad \forall A \in \mathcal{M}_2$$

for all $B \in \mathcal{A}$ and $\mathcal{E} \in \text{CB}\left(\mathcal{M}_1, \mathcal{L}\left(\mathcal{K}_1\right)\right)$

Dilation of superinstruments

Theorem (Dilation of quantum superinstruments)

Suppose that

$$\mathsf{R}:\mathcal{A}\rightarrow \mathsf{Hom}_{\mathbb{C}}(\mathsf{CB}\left(\mathcal{M}_{1},\mathcal{L}\left(\mathcal{K}_{1}\right)\right);\mathsf{CB}\left(\mathcal{M}_{2},\mathcal{L}\left(\mathcal{K}_{2}\right)\right))$$

is a quantum superinstrument. Then there exist a Hilbert space $\mathcal V$, an isometry $V:\mathcal K_2\to\mathcal K_1\otimes\mathcal V$ and a quantum instrument

$$\mathcal{J} \in \mathcal{M}\left(\Omega; \operatorname{CP}_{0}\left(\mathcal{M}_{2}, \mathcal{M}_{1} \bar{\otimes} \mathcal{L}(\mathcal{V})\right)\right)$$

such that (in the Schrödinger picture)

$$[\mathsf{R}_{\mathcal{B}}(\mathcal{E})]_*(\rho) = \mathcal{J}_{\mathcal{B}*}[(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})(V\rho V^*)] \quad \forall \rho \in \mathcal{T}(\mathcal{K}_2)$$

for all $B \in \mathcal{A}$ and $\mathcal{E} \in \text{CB}\left(\mathcal{M}_1, \mathcal{L}\left(\mathcal{K}_1\right)\right)$

- $\operatorname{CP}_1(\ell^\infty(X), \mathcal{L}(\mathcal{K}))$: input space of $\mathcal{L}(\mathcal{K})$ -valued POVMs on X
- ullet ${\mathbb C}$: trivial output space

Fix a quantum superinstrument

$$\mathsf{R}:\mathcal{A}\to \mathrm{Hom}_{\mathbb{C}}(\mathrm{CB}\,(\ell^\infty(X),\mathcal{L}(\mathcal{K}))\,;\mathbb{C})$$

By dilation theorem

$$\mathsf{R}_B(\mathcal{E}) = \langle v, (\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})(\mathcal{J}_B)v \rangle \quad \forall \mathcal{E} \in \mathsf{CB}\left(\ell^\infty(X), \mathcal{L}(\mathcal{K})\right), \, B \in \mathcal{A}$$

For $x \in X$, define the $\mathcal{L}(\mathcal{V})$ -valued POVM on Ω

$$Q_X: A \to \mathcal{L}(V)$$
 $Q_{XB} = (J_B)_X$

$$\mathsf{R}_{B}(\mathcal{E}) = \sum_{x \in X} \operatorname{tr} \left[Q_{x,B} (\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_{*} (\omega_{v})_{x} \right]$$

- $\operatorname{CP}_1(\ell^\infty(X), \mathcal{L}(\mathcal{K}))$: input space of $\mathcal{L}(\mathcal{K})$ -valued POVMs on X
- ullet ${\mathbb C}$: trivial output space

Fix a quantum superinstrument

$$\mathsf{R}:\mathcal{A}\to \mathrm{Hom}_{\mathbb{C}}(\mathrm{CB}\,(\ell^\infty(X),\mathcal{L}(\mathcal{K}))\,;\mathbb{C})$$

By dilation theorem

$$\mathsf{R}_{B}(\mathcal{E}) = \langle v, (\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})(\mathcal{J}_{B})v \rangle \quad \forall \mathcal{E} \in \mathrm{CB}\left(\ell^{\infty}(X), \mathcal{L}(\mathcal{K})\right), \ B \in \mathcal{A}$$

For $x \in X$, define the $\mathcal{L}(\mathcal{V})$ -valued POVM on Ω

$$Q_X: A \to \mathcal{L}(V)$$
 $Q_{XB} = (J_B)_X$

$$\mathsf{R}_B(\mathcal{E}) = \sum_{x \in X} \operatorname{tr} \left[Q_{X,B}(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_* (\omega_V)_X \right]$$

- $\operatorname{CP}_1(\ell^\infty(X), \mathcal{L}(\mathcal{K}))$: input space of $\mathcal{L}(\mathcal{K})$ -valued POVMs on X
- ullet ${\mathbb C}$: trivial output space

Fix a quantum superinstrument

$$\mathsf{R}:\mathcal{A}\to \mathrm{Hom}_{\mathbb{C}}(\mathrm{CB}\,(\ell^\infty(X),\mathcal{L}(\mathcal{K}))\,;\mathbb{C})$$

By dilation theorem

$$\mathsf{R}_{B}(\mathcal{E}) = \langle v, (\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})(\mathcal{J}_{B})v \rangle \quad \forall \mathcal{E} \in \mathsf{CB}\left(\ell^{\infty}(X), \mathcal{L}(\mathcal{K})\right), \ B \in \mathcal{A}$$

For
$$x \in$$
 Ancillary Hilbert space \mathcal{V} OVM on Ω
$$Q_{x B} = (\mathcal{J}_{B})_{x}$$

$$\mathsf{R}_B(\mathcal{E}) = \sum_{\mathsf{x} \in \mathsf{X}} \mathrm{tr} \left[Q_{\mathsf{X},\,B}(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_*(\omega_{\mathsf{V}})_{\mathsf{X}} \right]$$

- $\operatorname{CP}_1(\ell^\infty(X), \mathcal{L}(\mathcal{K}))$: input space of $\mathcal{L}(\mathcal{K})$ -valued POVMs on X
- ullet ${\mathbb C}$: trivial output space

Fix a quantum superinstrument

$$\mathsf{R}:\mathcal{A}\to \mathrm{Hom}_{\mathbb{C}}(\mathrm{CB}\,(\ell^\infty(X),\mathcal{L}(\mathcal{K}))\,;\mathbb{C})$$

By dilation theorem

$$\mathsf{R}_{\mathcal{B}}(\mathcal{E}) = \langle {\color{red} \mathbf{v}}, (\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})(\mathcal{J}_{\mathcal{B}}) {\color{red} \mathbf{v}} \rangle \quad \forall \mathcal{E} \in \mathrm{CB}\left(\ell^{\infty}({\color{black} X}), \mathcal{L}(\mathcal{K})\right), \, {\color{black} B} \in \mathcal{A}$$

For
$$x \in$$
 Unit vector $\mathbf{v} \in \mathcal{K} \otimes \mathcal{V}$ OVM on Ω
$$Q_{x \mid \mathcal{A} \rightarrow \mathcal{L}(\mathcal{V})} \qquad Q_{x \mid \mathcal{B}} = (\mathcal{J}_{\mathcal{B}})_{x}$$

$$\mathsf{R}_{B}(\mathcal{E}) = \sum_{\mathsf{x} \in \mathsf{X}} \operatorname{tr} \left[Q_{\mathsf{X}, B} (\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_{*} (\omega_{\mathsf{V}})_{\mathsf{X}} \right]$$

- $\operatorname{CP}_1(\ell^\infty(X), \mathcal{L}(\mathcal{K}))$: input space of $\mathcal{L}(\mathcal{K})$ -valued POVMs on X
- ullet ${\mathbb C}$: trivial output space

Fix a quantum superinstrument

$$\mathsf{R}:\mathcal{A}\to \mathrm{Hom}_{\mathbb{C}}(\mathrm{CB}\,(\ell^\infty(X),\mathcal{L}(\mathcal{K}))\,;\mathbb{C})$$

By dilation theorem

$$\mathsf{R}_{B}(\mathcal{E}) = \langle v, (\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})(\underline{\mathcal{J}_{B}})v \rangle \quad \forall \mathcal{E} \in \mathsf{CB}\left(\ell^{\infty}(X), \mathcal{L}(\mathcal{K})\right), \ B \in \mathcal{A}$$

For *x* ∈ Quantum instrument

$$\mathcal{J}: \mathcal{A} \longrightarrow \operatorname{CP}(\mathbb{C}, \ell^{\infty}(X) \bar{\otimes} \mathcal{L}(\mathcal{V})) \simeq \ell^{\infty}(X; \mathcal{L}(\mathcal{V}))_{+}$$

$$\mathsf{R}_{B}(\mathcal{E}) = \sum_{x \in X} \operatorname{tr} \left[Q_{X,B}(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_{*}(\omega_{V})_{X} \right]$$

- $\operatorname{CP}_1(\ell^\infty(X), \mathcal{L}(\mathcal{K}))$: input space of $\mathcal{L}(\mathcal{K})$ -valued POVMs on X
- ullet ${\mathbb C}$: trivial output space

Fix a quantum superinstrument

$$\mathsf{R}:\mathcal{A}\to \mathrm{Hom}_{\mathbb{C}}(\mathrm{CB}\left(\ell^\infty(X),\mathcal{L}(\mathcal{K})\right);\mathbb{C})$$

By dilation theorem (in the Schrödinger picture)

$$\mathsf{R}_{\mathcal{B}}(\mathcal{E}) = [\mathcal{J}_{\mathcal{B}*}(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_*](\omega_{\mathcal{V}}) \quad \forall \mathcal{E} \in \mathsf{CB}\left(\ell^{\infty}(\mathcal{X}), \mathcal{L}(\mathcal{K})\right), \ \mathcal{B} \in \mathcal{A}$$

Notation

 ω_{ν} : ortogonal projection on $\mathbb{C}\nu$ (rank-1 element in $\mathcal{T}(\mathcal{K}\otimes\mathcal{V})$)

$$\mathsf{R}_{B}(\mathcal{E}) = \sum_{\mathsf{x} \in \mathsf{X}} \operatorname{tr} \left[Q_{\mathsf{X},B} (\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_{*} (\omega_{\mathsf{v}})_{\mathsf{X}} \right]$$

- $\operatorname{CP}_1(\ell^\infty(X), \mathcal{L}(\mathcal{K}))$: input space of $\mathcal{L}(\mathcal{K})$ -valued POVMs on X

Fix a quantum superinstrument

$$\mathsf{R}:\mathcal{A}\to \mathrm{Hom}_{\mathbb{C}}(\mathrm{CB}\,(\ell^\infty(X),\mathcal{L}(\mathcal{K}))\,;\mathbb{C})$$

By dilation theorem (in the Schrödinger picture)

$$\mathsf{R}_{\mathcal{B}}(\mathcal{E}) = [\mathcal{J}_{\mathcal{B}*}(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_*](\omega_{\mathcal{V}}) \quad \forall \mathcal{E} \in \mathrm{CB}\left(\ell^{\infty}(\mathcal{X}), \mathcal{L}(\mathcal{K})\right), \ \mathcal{B} \in \mathcal{A}$$

For $x \in X$, define the $\mathcal{L}(\mathcal{V})$ -valued POVM on Ω

$$Q_X: \mathcal{A} \to \mathcal{L}(\mathcal{V})$$
 $Q_{XB} = (\mathcal{J}_B)_X$

$$\mathsf{R}_{B}(\mathcal{E}) = \sum_{x \in X} \operatorname{tr} \left[Q_{x,B}(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_{*}(\omega_{v})_{x} \right]$$

- $\operatorname{CP}_1(\ell^\infty(X), \mathcal{L}(\mathcal{K}))$: input space of $\mathcal{L}(\mathcal{K})$ -valued POVMs on X
- ullet ${\mathbb C}$: trivial output space

Fix a quantum superinstrument

$$\mathsf{R}:\mathcal{A}\to \mathrm{Hom}_{\mathbb{C}}(\mathrm{CB}\,(\ell^\infty(X),\mathcal{L}(\mathcal{K}))\,;\mathbb{C})$$

By dilation theorem (in the Schrödinger picture)

$$\mathsf{R}_{\mathcal{B}}(\mathcal{E}) = [\mathcal{J}_{\mathcal{B}*}(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_*](\omega_{\mathcal{V}}) \quad \forall \mathcal{E} \in \mathrm{CB}\left(\ell^{\infty}(\mathcal{X}), \mathcal{L}(\mathcal{K})\right), \ \mathcal{B} \in \mathcal{A}$$

For $x \in X$, define the $\mathcal{L}(\mathcal{V})$ -valued POVM on Ω

$$Q_X: \mathcal{A} \to \mathcal{L}(\mathcal{V})$$
 $Q_{XB} = (\mathcal{J}_B)_X$

$$\mathsf{R}_{\mathcal{B}}(\mathcal{E}) = \sum_{\mathsf{x} \in \mathsf{X}} \mathrm{tr} \left[Q_{\mathsf{x},\, \mathcal{B}} (\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_* (\omega_{\mathsf{v}})_{\mathsf{x}} \right]$$

- $\operatorname{CP}_1(\ell^\infty(X), \mathcal{L}(\mathcal{K}))$: input space of $\mathcal{L}(\mathcal{K})$ -valued POVMs on X
- ullet ${\mathbb C}$: trivial output space

Fix a quantum superinstrument

$$\mathsf{R}:\mathcal{A}\to \mathrm{Hom}_{\mathbb{C}}(\mathrm{CB}\,(\ell^\infty(X),\mathcal{L}(\mathcal{K}))\,;\mathbb{C})$$

By dilation theorem (in the Schrödinger picture)

$$\mathsf{R}_{\mathcal{B}}(\mathcal{E}) = [\mathcal{J}_{\mathcal{B}*}(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_*](\omega_{\mathcal{V}}) \quad \forall \mathcal{E} \in \mathrm{CB}\left(\ell^{\infty}(\mathcal{X}), \mathcal{L}(\mathcal{K})\right), \ \mathcal{B} \in \mathcal{A}$$

For $x \in X$, define the $\mathcal{L}(\mathcal{V})$ -valued POVM on Ω

$$Q_X: \mathcal{A} \to \mathcal{L}(\mathcal{V})$$
 $Q_{XB} = (\mathcal{J}_B)_X$

Then

$$\mathsf{R}_{\mathcal{B}}(\mathcal{E}) = \sum_{\mathsf{x} \in \mathsf{X}} \operatorname{tr} \left[\mathit{Q}_{\mathsf{x},\, \mathit{B}} (\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_{*} (\omega_{\mathsf{v}})_{\mathsf{x}} \right]$$

Prepare a pure bipartite state ω_{ν} in $\mathcal{K} \otimes \mathcal{V}$

- $\operatorname{CP}_1(\ell^\infty(X), \mathcal{L}(\mathcal{K}))$: input space of $\mathcal{L}(\mathcal{K})$ -valued POVMs on X
- ullet ${\mathbb C}$: trivial output space

Fix a quantum superinstrument

$$\mathsf{R}:\mathcal{A}\to \mathrm{Hom}_{\mathbb{C}}(\mathrm{CB}\,(\ell^\infty(X),\mathcal{L}(\mathcal{K}))\,;\mathbb{C})$$

By dilation theorem (in the Schrödinger picture)

$$\mathsf{R}_{\mathcal{B}}(\mathcal{E}) = [\mathcal{J}_{\mathcal{B}*}(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_*](\omega_{\mathcal{V}}) \quad \forall \mathcal{E} \in \mathrm{CB}\left(\ell^{\infty}(\mathcal{X}), \mathcal{L}(\mathcal{K})\right), \ \mathcal{B} \in \mathcal{A}$$

For $x \in X$, define the $\mathcal{L}(\mathcal{V})$ -valued POVM on Ω

$$Q_X: \mathcal{A} \to \mathcal{L}(\mathcal{V})$$
 $Q_{XB} = (\mathcal{J}_B)_X$

Then

$$\mathsf{R}_{\mathcal{B}}(\mathcal{E}) = \sum_{\mathsf{x} \in \mathsf{X}} \operatorname{tr} \left[Q_{\mathsf{x}, \, \mathcal{B}} (\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_* (\omega_{\mathsf{v}})_{\mathsf{x}} \right]$$

Measure the POVM \mathcal{E} on \mathcal{K} , thus obtaining the outcome $x \in X$

- $\operatorname{CP}_1(\ell^\infty(X), \mathcal{L}(\mathcal{K}))$: input space of $\mathcal{L}(\mathcal{K})$ -valued POVMs on X

Fix a quantum superinstrument

$$\mathsf{R}:\mathcal{A}\to \mathrm{Hom}_{\mathbb{C}}(\mathrm{CB}\,(\ell^\infty(X),\mathcal{L}(\mathcal{K}))\,;\mathbb{C})$$

By dilation theorem (in the Schrödinger picture)

$$\mathsf{R}_{B}(\mathcal{E}) = [\mathcal{J}_{B*}(\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_{*}](\omega_{\nu}) \quad \forall \mathcal{E} \in \mathrm{CB}\left(\ell^{\infty}(X), \mathcal{L}(\mathcal{K})\right), \ B \in \mathcal{A}$$

For $x \in X$, define the $\mathcal{L}(\mathcal{V})$ -valued POVM on Ω

$$Q_X: \mathcal{A} \to \mathcal{L}(\mathcal{V})$$
 $Q_{XB} = (\mathcal{J}_B)_X$

Then

$$\mathsf{R}_{\mathcal{B}}(\mathcal{E}) = \sum_{\mathbf{x} \in \mathbf{X}} \operatorname{tr} \left[\mathbf{Q}_{\mathbf{x},\,\mathbf{B}} (\mathcal{E} \otimes \mathcal{I}_{\mathcal{V}})_* (\omega_{\mathbf{v}})_{\mathbf{x}} \right]$$

Conditionally on x, measure Q_x on \mathcal{V} , and obtain an outcome in B

Index

- Quantum operations
 - Definition
 - Dilation of quantum operations
- Quantum supermaps
 - Definition
 - Dilation of quantum supermaps
 - Examples
- Superinstruments
 - Definition
 - Dilation of superinstruments
 - Examples
- Conclusions

Summary

- We have given a general definition of supermaps
- We have provided a dilation theorem for deterministic and probabilistic supermaps
- We have characterized quantum superinstruments on the space of quantum channels
- We have shown some applications

Open problems

- How can the dilation theorems be extended to generic supermaps (not deterministic nor probabilistic)?
- ② Is there a topology on $CB(\mathcal{M}, \mathcal{N})$ such that normality of supermaps is equivalent to continuity?

References

- Chiribella, G., Toigo, A., Umanità, V., Quantum supermaps transforming quantum operations on separable von Neumann algebras, submitted to Infin. Dimens. Anal. Qu. (2012)
- Chiribella, G., Toigo, A., Umanità, V., Normal completely positive maps on the space of quantum operations, submitted to J. Func. Anal. (2011)
- 3 Chiribella, G., D'Ariano, G. M., and Perinotti, P., A theoretical framework for quantum networks, Phys. Rev. A **80** (2009)

References

- Chiribella, G., D'Ariano, G. M., and Perinotti, P., Quantum circuits architecture, Phys. Rev. Lett. 101, 060401 (2008)
- 6 Chiribella, G., D'Ariano, G. M., and Perinotti, P., Transforming quantum operations: quantum supermaps, Europhys. Lett. 83, 30004 (2008)
- Ziman, M., Process POVM: A mathematical framework for the description of process tomography experiments, Phys. Rev. A 77, 062112 (2008)