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Weyl systems and conjugate observables
G is a locally compact second countable Abelian group
Ĝ is the dual of G
µ and µ̂ are the Haar measures of G and Ĝ
〈 ξ , x 〉 is the pairing of ξ ∈ Ĝ and x ∈ G

Definition (Weyl system)

Two unitary representations U of G and V of Ĝ in the same Hilbert
space H form a Weyl system for the pair (G, Ĝ) if

1 for all x ∈ G, ξ ∈ Ĝ

UxVξ = 〈 ξ , x 〉VξUx ;

2 there exists no nontrivial subspace H0 ⊂ H such that

UxH0 ⊂ H0 and VξH0 ⊂ H0 ∀x ∈ G, ξ ∈ Ĝ .
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Definition (Conjugate observables)

Two observables A : B(G)→ L(H) and B : B(Ĝ)→ L(H) are
conjugated if

UxA(X )U∗x = A(X + x) VξA(X )V ∗ξ = A(X )

UxB(Ξ)U∗x = B(Ξ) VξB(Ξ)V ∗ξ = B(Ξ + ξ)

for all x ∈ G, ξ ∈ Ĝ, X ∈ B(G), Ξ ∈ B(Ĝ).
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By Stone-Naimark-Ambrose-Godement Theorem,

Ux =

∫
Ĝ
〈 ξ , x 〉 dB̂(ξ) Vξ =

∫
G
〈 ξ , x 〉 dÂ(ξ) .

where Â and B̂ are conjugated spectral measures.

Every Weyl system is unitarily equivalent to the canonical one

H = L2(G, µ)

Ux f = f (· − x) Vξf = 〈 ξ , · 〉 f

Â(X )f = 1X f B̂(Ξ)f = (F−1
1Ξ) ∗ f

where F : L2(G, µ)→ L2(Ĝ, µ̂) is Fourier transform and ∗ is
convolution.

Alessandro Toigo (PoliMi, INFN) Coexistence of conjugate observables 7/31 Munich, September 10th, 2013 7 / 31



By Stone-Naimark-Ambrose-Godement Theorem,

Ux =

∫
Ĝ
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Example: G = Ĝ = R

H = L2(R, dx)

Ux = e−ixP Vξ = eiξQ

P =

∫
R

z dÂ(z) Q =

∫
R

z dB̂(z)
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Example: G = Ĝ = Zd

H = Cd

Uxek = ek+x Vξek = e2πi ξk
d ek

Â(k) = |ek 〉 〈ek | B̂(k) = F∗Â(k)F .

In particular, the observavles Â and B̂ are mutually unbiased

tr
[
Â(i)B̂(j)

]
= 1/d ∀i , j .
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Structure of conjugate observables

Theorem (Carmeli, Heinosaari, T.)
If (A,B) are conjugate observables, there exist unique probability
measures Λ on G and Γ on Ĝ such that

A(X ) =: AΛ(X ) =

∫
G

Λ(X − x) dÂ(x) ∀X ∈ B(G)

B(Ξ) =: BΓ(Ξ) =

∫
Ĝ

Γ(Ξ− ξ) dB̂(ξ) ∀Ξ ∈ B(Ĝ) .

The observables (AΛ,BΓ) are noisy versions of (Â, B̂):

pAΛ
ρ (X ) := tr [ρAΛ(X )] = (Λ ∗ pÂ

ρ )(X )

pBΓ
ρ (Ξ) := tr [ρBΓ(Ξ)] = (Γ ∗ pB̂

ρ )(Ξ)
∀ρ ∈ S(H) .
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Covariant phase-space observables

Definition (Covariant phase-space observables)

An observable G : B(G × Ĝ)→ L(H) is a covariant phase-space
observable if

UxVξG(Z )V ∗ξ U∗x = G(Z + (x , ξ))

for all Z ∈ B(G × Ĝ), x ∈ G, ξ ∈ Ĝ.

Theorem (Holevo; Cassinelli, De Vito, T.)
If G is a covariant phase-space observable, then there exists a unique
state τ ∈ S(H) such that

G(Z ) =

∫
Z

UxVξτV ∗ξ U∗x dµ(x) dµ̂(ξ) ∀Z ∈ B(G × Ĝ) .
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Main theorem

Taking the margins of a covariant phase-space observable

A(X ) = G(X × Ĝ) B(Ξ) = G(G × Ξ)

we obtain conjugate observables (A,B).

Definition (Joint measurability)
Conjugate observables (A,B) are jointly measurabile if they are the
margins of a single observable G on G × Ĝ.

Remark
The joint observable G is in general not unique.
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Corollaries

Corollary
For conjugate observables (AΛ,BΓ), these are equivalent facts:

- (AΛ,BΓ) are jointly measurable;
- there is a state τ ∈ S(H) such that

Λ(X ) = tr
[
τ Â(−X )

]
Γ(Ξ) = tr

[
τ B̂(−Ξ)

]
;

- there is a vector ψ ∈ H ⊗H such that

Λ(X ) =
〈
ψ , (Â(−X )⊗ 1)ψ

〉
Γ(Ξ) =

〈
ψ , (B̂(−X )⊗ 1)ψ

〉
.

Corollary
Conjugate observables (AΛ,BΓ) are jointly measurable only if Λ and Γ
have densities w.r.t. the Haar measures µ and µ̂.
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Case G = Ĝ = R

If p is a probability measure on R,

Var(p) =

∫
R

(
y −

∫
R

x dp(x)

)2

dp(y) .

Proposition
If the conjugate observables (A,B) are jointly measurable, then for all
states ρ ∈ S(H)

Var(pA
ρ )Var(pB

ρ ) ≥ 1 .
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Case G = Ĝ = Zd

If λ, γ ∈ [0,1], we define conjugate observables (Aλ,Bγ)

Aλ(k) = λÂ(k) + (1− λ)
1
d
1

Bγ(k) = γB̂(k) + (1− γ)
1
d
1 .

Proposition
For all λ ∈ [0,1], let

γmax(λ) =
(d − 2)(1− λ) + 2

√
(1− d)λ2 + (d − 2)λ+ 1

d
.

Then, the conjugate observables (Aλ,Bγ) are jointly measurable if and
only if 0 ≤ γ ≤ γmax(λ).
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If λ, γ ∈ [0,1], we define conjugate observables (Aλ,Bγ)
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Figure: The boundary curve λ 7→ γmax(λ) for d = 2,3,4,5 (red solid curves)
and for d = 10,100,1000 (orange dashed curves).

Alessandro Toigo (PoliMi, INFN) Coexistence of conjugate observables 17/31 Munich, September 10th, 2013 17 / 31



0 1
0

1

Λ

Γ

Figure: In this picture d = 10. The grey regions represent necessary and
sufficient linear conditions.
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Corollary
Conjugate observables (Aλ,Bγ)

- are jointly measurable if γ + λ ≤ 1;

- are not jointly measurable if γ + λ ≥ 1 +
√

d−1
d−1 .

Proposition
If γ = γmax(λ), then the conjugate observables (Aλ,Bγ) have a unique
joint observable. This unique joint observable is the covariant
phase-space observable Gτ with

τ = |χλ〉 〈χλ| , χλ = αλe0 + βλF∗e0 ,

where

αλ =
1√
d

[√
(d − 1)λ+ 1−

√
1− λ

]
βλ =

√
1− λ .
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If p and r are probability distributions on Zd , define

Aλ;p(j) = λA(j) + (1− λ)p(j)1
Bγ;r (k) = γB(k) + (1− γ)r(k)1 .

The observables Aλ;p and Bγ;r are not covariant. However, the
following still holds.

Proposition
The observables Aλ;p and Bγ;r are jointly measurable if and only if
0 ≤ γ ≤ γmax(λ).
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Sequential implementation

Define the Aλ-compatible instrument

I : Zd × S(H)→ S(H)

I(k , ρ) =
√

Aλ(k)ρ
√

Aλ(k)

Then, I is a generalized position instrument

UiVjI(k ,V ∗j U∗i ρUiVj)V ∗j U∗i = I(i + k , ρ)

and a sequential measurement of I followed by B gives the covariant
phase-space observable

G(i , j) = I∗i (B(j)) =
√

Aλ(i)Bγ(j)
√

Aλ(i) .

It is easy to check that G ≡ Gτ , with τ = |χλ〉 〈χλ|. Therefore, G is a
joint observable of (Aλ,Bγ) with γ ≡ γmax(λ).
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Informational completeness

Proposition
Suppose (Aλ,Bγ) are conjugate observables.

- If λ /∈ {0,1} and 0 < γ < γmax(λ), then they have an
informationally complete joint observable.

- If λ /∈ {0,1} and γ = γmax(λ), then their unique joint observable is
informationally complete if and only if d is odd.

- If λ = 0 or γ = 0, then they have no informationally complete joint
observable.
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Case |G| = |Ĝ| <∞.

If conjugate observables (A,B) are jointly measurable, with joint
observable G on G × Ĝ, we define

G̃(x , ξ) =
1
|G|2

∑
(y ,η)∈G×Ĝ

U∗y V ∗ηG(x + y , ξ + η)VηUy︸ ︷︷ ︸
G(y,η)(x ,ξ)

.

Then, G̃ is a covariant phase-space observable with margins

G̃({x} × Ĝ) =
1
|G|2

∑
(y ,η)∈G×Ĝ

U∗y V ∗η
∑
ξ∈Ĝ

G(x + y , ξ + η)VηUy

=
1
|G|2

∑
(y ,η)∈G×Ĝ

U∗y V ∗ηA(x + y)VηUy = A(x) .
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If conjugate observables (A,B) are jointly measurable, with joint
observable G on G × Ĝ, we define
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U∗y V ∗η
∑
ξ∈Ĝ
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=
1
|G|2

∑
(y ,η)∈G×Ĝ

U∗y V ∗ηB(ξ + η)VηUy = B(ξ)
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Case |G| = |Ĝ| =∞

Definition (Invariant mean)
Let Ω be a locally compact separable metric space. An operator valued
mean on Ω is a linear map

M : BC(Ω)→ L(K)

such that
(i) M(f ) ≥ 0 if f ≥ 0;

(ii) M(1) = 1.

An observable M on Ω defines a operator valued mean on Ω

M(f ) :=

∫
Ω

f (ω) dM(ω) ∀f ∈ BC(Ω) .
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If M is an operator valued mean on Ω, define

M(∞) = 1− LUB{M(f ) | f ∈ Cc(Ω), 0 ≤ f ≤ 1} .

There exists a unique operator valued measure M0 on Ω such that

M(f ) = M0(f ) ∀f ∈ Cc(Ω) .

For such M0,
M0(Ω) = 1−M(∞) .

Proposition
If M(∞) = 0, then

M(f ) = M0(f ) ∀f ∈ BC(Ω) .
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Suppose Ω = Ω1 × Ω2.
For fi ∈ BC(Ωi), define f̃i ∈ BC(Ω) as

f̃i(ω1, ω2) = fi(ωi) .

Definition (Margins of an operator valued mean)
If M is an operator valued mean on Ω, then the i -th margin of M is the
operator valued mean Mi on Ωi given by

Mi(fi) = M(f̃i) ∀fi ∈ BC(Ωi) .

Proposition
Let M be an operator valued mean on Ω.

(i) If M1(∞) = M2(∞) = 0, then M(∞) = 0.
(ii) If M(∞) = 0, then (M0)i = (Mi)0.
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For all f ∈ BC(G × Ĝ) and (x , ξ) ∈ G × Ĝ, let

f(x ,ξ) = f (·+ x , ·+ ξ) .

Definition (Invariant mean)

A mean m on G × Ĝ is invariant if

m(f(x ,ξ)) = m(f ) ∀f ∈ BC(G × Ĝ), (x , ξ) ∈ G × Ĝ .

Theorem (E. Hewitt, K. A. Ross, Th. IV.17.5)

There exists an invariant mean on G × Ĝ.
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Let M be a joint observable of AΛ and BΓ.
For all ϕ,ψ ∈ H and (x , ξ) ∈ G × Ĝ, define

Θ[f ;ϕ,ψ](x , ξ) =
〈

M(f(x ,ξ))V ∗ξ U∗xϕ , V ∗ξ U∗xψ
〉
.

Then, Θ[f ;ϕ,ψ] ∈ BC(G × Ĝ), and

Θ[f(x ,ξ);ϕ,ψ] = Θ[f ; UxVξϕ,UxVξψ](x ,ξ)

Θ[f̃1;ϕ,ψ](x , ξ) = 〈AΛ(f )ϕ , ψ 〉 ∀f ∈ BC(G)

Θ[g̃2;ϕ,ψ](x , ξ) = 〈BΓ(g)ϕ , ψ 〉 ∀g ∈ BC(Ĝ) .
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Fix an invariant mean m on G × Ĝ, and define the map

Mav : BC(G × Ĝ)→ L(H)

〈Mav(f )ϕ , ψ 〉 = m(Θ[f ;ϕ,ψ]) .

Then, Mav is a operator valued mean on G × Ĝ satisfying

Mav(f(x ,ξ)) = V ∗ξ U∗x Mav(f )UxVξ .

Moreover,

Mav
1 = AΛ

Mav
2 = BΓ

=⇒
Mav

1 (∞) = 0
Mav

2 (∞) = 0
=⇒ Mav(∞) = 0 .

Therefore, Mav = Mav
0 , that is, Mav is an operator valued measure on

G × Ĝ.
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