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Abstract

We characterize the reproducing kernel Hilbert spaces whose el-
ements are p-integrable functions in terms of the boundedness of the
integral operator whose kernel is the reproducing kernel. Moreover, for
p = 2 we show that the spectral decomposition of this integral opera-
tor gives a complete description of the reproducing kernel, extending
Mercer theorem.

1 Introduction

The aim of this paper is the characterization of the reproducing kernel
Hilbert spaces (RKH spaces) whose elements are vector valued p-integrable
functions. We show that, if H is such a space and Γ its reproducing kernel,
the functions in H are p-integrable if and only if the integral operator of
kernel Γ is bounded from L

p
p−1 to Lp. Moreover, for p = 2, we prove a

generalized version of Mercer theorem, that is, the fact that the reproduc-
ing kernel can be expressed in terms of the spectral measure of the integral
operator. Our results hold for RKH spaces of functions f : X → K where X
is a measurable set and K is a Hilbert space, following the general setting
of vector valued RKH spaces outlined in [1, 2, 3].

The characterization of the regularity properties of the RKH spaces
in terms of corresponding properties of the reproducing kernel is already
discussed in the literature. In [3] there is a complete characterization of
RKH spaces whose elements are continuous or smooth complex functions,
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see also [4], whereas in [1] there is a discussion of RKH spaces of holo-
morphic vector valued functions. However, a similar treatment for RKH
spaces of p-integrable functions has not yet been exploited. The problem
of square-integrability is discussed in the framework of harmonic analysis in
connection with square-integrable representations (there is a large literature
on the topic, see for example [5, 6] and references therein); in a general
setting there are some sufficient conditions in [4].

The motivation of the present work is twofold. In recent years there is
a new interest for the theory of RKH spaces in different frameworks, like
quantum mechanics [7], signal analysis [8, 6], probability theory [9] and sta-
tistical learning theory [10, 11]. In particular, for these applications there is
often the need of RKH spaces whose elements are square-integrable (possibly
vector valued) functions. However, most of references are mainly devoted to
characterize operations between RKH spaces (like sum, restriction, tensor
product), whereas few papers discuss the correspondence between regularity
properties of RKH spaces and features of the associated kernels.

This paper is both a research article and a self-contained survey about
RKH spaces whose elements are functions that take value in a separable
Hilbert space K and are p-integrable according to a σ-finite measure. The
article is organized as follows. At the beginning of each section we briefly
introduce the main notations we need. In Section 2, following [3, 4] we
review the connection between

1. RKH spaces of functions from a set X into a Hilbert space K;

2. kernels of positive type on X × X and taking value in the space of
bounded operators on K;

3. maps on X taking values in the space of bounded operators from K
into an arbitrary Hilbert space.

In Section 3 we study the problem of measurability under the assumption
that both K and the RKH space are separable. Our proof is an easy con-
sequence of the equivalence between weak and strong measurability for op-
erator valued maps. In Section 4 we assume that X is a measurable set
endowed with a σ-finite measure µ and we show that a RKH space H is a
subspace of Lp(X,µ;K) if and only if the integral operator whose kernel is
the reproducing kernel of H is bounded from L

p
p−1 (X,µ;K) into Lp(X,µ;K).

This is the main result of the paper. In Section 4.4 we give additional con-
ditions on the reproducing kernel Γ ensuring that the inclusion of H into
Lp(X,µ;K) is compact. In Section 5 we assume that X is a locally compact
space and we prove that the RKH space H is a subspace of C(X;K) if and
only if the reproducing kernel is locally bounded and separately continuous.
As before we also discuss the compactness of the inclusion. For the scalar
case the results we present are due to [3], however we give an elementary
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proof which holds also for the vector case.
Finally, in Section 6 we assume that X is a measurable space endowed
with a σ-finite measure µ and H is a separable RKH space such that
H ⊂ L2(X,µ;K). We characterize the space H and the reproducing ker-
nel Γ in terms of the spectral decomposition of the corresponding integral
operator. When X is a compact subset of Rn endowed with the Lebesgue
measure, this kind of result is known as Mercer theorem [12]. Extensions of
Mercer theorem can be found in [10, 13, 14] and references therein.

2 Reproducing kernel Hilbert spaces

In this section we give the definition of vector valued RKH spaces, we show
the correspondence between such spaces and vector valued kernels of positive
type and we analyse the relation between the vector and scalar case. The
results we present in this section are well known for the scalar case, see
[4, 15, 9] for updated references. For the vector case we refer to [3, 2, 1].

2.1 Notations

Given two sets X and Y , the vector space of functions from X into Y
is denoted by Y X endowed with the topology of point-wise convergence.
If H is a Hilbert space1, the corresponding norm and scalar product are
denoted by ‖·‖H and 〈·, ·〉H, respectively. The scalar product is linear in the
first argument. If H, K are Hilbert spaces, B(H;K) is the Banach space of
bounded operators from H to K (with B(H) = B(H;H) ) and ‖·‖

H,K
denotes

the uniform norm in B(H;K). If A ∈ B(H;K), KerA denotes the kernel,
ImA the image and A∗ ∈ B(K;H) the adjoint.
Finally we let B0(H;K) be the Banach space of compact operators with the
uniform norm and B1(H;K) the Banach space of trace class operators with
the trace norm.

2.2 Definitions and main properties

We recall the definitions of RKH space and of kernel of positive type for
vector valued functions. Let X be a set and K a Hilbert space.

Definition 1 A K-valued reproducing kernel Hilbert space on X is a
Hilbert space H such that

1. the elements of H are functions from X to K;

2. for all x ∈ X there exists a positive constant Cx such that

‖f(x)‖K ≤ Cx ‖f‖H ∀f ∈ H. (1)
1We only consider the case of complex Hilbert spaces, however almost all the results

hold in the real case.
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Definition 2 A K-kernel of positive type on X×X is a map Γ : X×X −→
B(K) such that, for all N ∈ N, x1, . . . , xN ∈ X and c1, . . . , cN ∈ C,

N∑
i,j=1

cicj〈Γ(xj , xi)v, v〉K ≥ 0 ∀v ∈ K.

As in the scalar case any RKH space H canonically defines a K-kernel of
positive type. Indeed, given x ∈ X, (1) ensures that the evaluation map at
x

evx : H −→ K evx(f) = f(x)

is a bounded operator and the reproducing kernel associated to H is defined
as the map

Γ : X ×X −→ B(K) Γ(x, y) = evxev∗y.

Since for all v ∈ K〈
N∑

i,j=1

cicjΓ(xj , xi)v, v

〉
K

=

〈
N∑

i=1

ciev∗xi
v,

N∑
j=1

cjev∗xj
v

〉
K

≥ 0,

the map Γ is K-kernel of positive type.
To study the regularity properties of the elements of H it is useful to

introduce the map

γ : X −→ B(K;H), γ(x) = ev∗x,

so that Γ(x, y) = γ(x)∗γ(y).
The following properties are simple consequences of the definition.

1. The kernel Γ reproduces the value of a function f ∈ H at a point
x ∈ X. Indeed, for all x ∈ X and v ∈ K

ev∗xv = Γ(·, x)v

so that
〈f(x), v〉K = 〈f,Γ(·, x)v〉H. (2)

The inclusion of H into KX can be written as the linear operator
ıΓ : H → KX

(ıΓf)(x) = γ(x)∗f f ∈ H, x ∈ X (3)

and (1) is equivalent to the fact that ıΓ is continuous from H into KX .
This point of view is developed in full generality in [3] where KX is
replaced by any locally convex topological vector space.
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2. The set {ev∗xv | x ∈ X, v ∈ K} is total in H, that is,

(∪x∈XIm ev∗x)⊥ = {0}. (4)

Indeed, if f ∈ (∪x∈XIm ev∗x)⊥, then f ∈ (Im ev∗x)⊥ = Ker evx for all
x ∈ X, so that f(x) = 0 for all x ∈ X, i.e. f = 0.

3. Since ‖evx‖H,K
= ‖ev∗x‖K,H

= ‖Γ(x, x)‖
1
2
K,K

‖f(x)‖K ≤ ‖Γ(x, x)‖
1
2
K,K

‖f‖H x ∈ Xf ∈ H.

Hence, if a sequence (fn)n∈N converges to f in H, it converges uni-
formly on any subset C ⊂ X such that supx∈C ‖Γ(x, x)‖

K,K
is finite.

In particular, (fn)n∈N converges point-wise to f on X.

The next proposition proves that any K-kernel Γ of positive type on X
defines a unique K-valued RKH space whose reproducing kernel is Γ. For the
scalar case, it has been obtained by many authors, see [16, 17, 18, 19, 20, 21]
and, for a complete list of references, [15, 22, 23, 4]. For the vector case see
[2, 3].

Proposition 1 Given a K-kernel of positive type Γ : X ×X → K, there is
a unique K-valued RKH space H on X with reproducing kernel Γ.

Proof. We report the proof of [3], see also [15]. For all x ∈ X and v ∈ K,
define the function Γx,v = Γ(·, x)v ∈ KX and

H0 = span {Γx,v | x ∈ X, v ∈ K} ⊂ KX .

If f =
∑n

i ciΓxi,vi and g =
∑n

j djΓyj ,wj are elements of H0, we have∑
j

dj〈f(yj), wj〉K =
∑
ij

cidj〈Γ(yj , xi)vi, wj〉K =
∑

i

ci〈vi, g(xi)〉K,

so the sesquilinear form on H0 ×H0

〈f, g〉 =
∑
ij

cidj〈Γ(yj , xi)vi, wj〉K

is well defined. The fact that Γ is a K-kernel of positive type implies that
〈f, f〉 ≥ 0 for all f ∈ H0. The positivity ensures that the sesquilinear form
is hermitian. Let now x ∈ X, the choice g = Γx,v in the above definition
gives

〈f,Γx,v〉 = 〈f(x), v〉K ∀x ∈ X
for all f ∈ H0.
We claim that the above sesquilinear form is a scalar product. If f ∈ H0,
for all v ∈ K with ‖v‖K = 1 by the Cauchy-Schwarz inequality we have

|〈f(x), v〉K| = | 〈f,Γx,v〉 | ≤ 〈f, f〉1/2 〈Γx,v,Γx,v〉1/2

= 〈f, f〉1/2 〈Γ(x, x)v, v〉1/2
K ≤ 〈f, f〉1/2 ‖Γ(x, x)‖1/2

K,K
,
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implying
‖f(x)‖K ≤ 〈f, f〉1/2 ‖Γ(x, x)‖1/2

K,K
.

Hence, if 〈f, f〉 = 0, then f = 0 and, hence, 〈·, ·〉 is a scalar product on H0.
Let H be the completion of H0 and define Γx : K → H, Γxv = Γx,v, which is
bounded by construction, and A : H → KX , (Af)(x) = Γ∗xf . We claim that
A is injective. Indeed, if Af = 0, then f ∈ ker Γ∗x = Im Γx

⊥ for all x ∈ X
and, since the set ∪x∈XIm Γx generates H0, f = 0 . Due to the fact that A
is injective, H can be canonically identified with a subspace of KX , so that
f(x) = evxf = Γ∗xf showing that H is a RKH space with reproducing kernel

ΓH(x, y)v = (ev∗yv)(x) = Γ(x, y)v.

The uniqueness of H is evident from the uniqueness of the completion.

The above theorem holds also if K is a real vector space provided we add
the assumption that Γ is symmetric, Γ(x, y) = Γ(y, x). If K is a complex
space, a kernel of positive type is always hermitian, Γ(x, y)∗ = Γ(y, x).

The following proposition shows another way to define a RKH space H.
This point of view is developed in [4].

Proposition 2 Let Ĥ be an arbitrary Hilbert space and A : Ĥ → KX . The
following facts are equivalent.

1. For any x ∈ X there is a positive constant Cx satisfying

‖(Au)(x)‖K ≤ Cx ‖u‖ bH u ∈ Ĥ.

2. There is a map γ : X → B(K; Ĥ) such that

(Au)(x) = γ(x)∗u u ∈ Ĥ, x ∈ X. (5)

3. The operator A is a partial isometry from Ĥ onto a RKH space H ⊂
KX .

If one of the above conditions is satisfied, then

kerA = (∪x∈XIm γ(x))⊥ , (6)

the reproducing kernel of H is

Γ(x, y) = γ(x)∗γ(y) x, y ∈ X

and the evaluation map at x ∈ X is

evx = (Aγ(x))∗ : H → K. (7)
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Proof. Clearly 1. ⇐⇒ 2. and 3. ⇒ 1.. We show 2. ⇒ 3.. Indeed, (5) en-
sures that the kernel of A is N = ∩x∈X ker γ(x)∗, which is closed. Moreover,

N = ∩x∈X ker γ(x)∗ = ∩x∈X (Im γ(x))⊥ = (∪x∈XIm γ(x))⊥ ,

so (6) follows and the restriction of A to N⊥ is injective. Let H = ImA as a
vector space, and define on it the unique Hilbert space structure such that
A becomes a partial isometry from Ĥ onto H and we denote this partial
isometry again by A. We show that H is a RKH space. Since A∗A is the
projection onto N⊥, given f ∈ H where f = Au and u ∈ N⊥,

f(x) = (Au)(x) = γ(x)∗u = γ(x)∗A∗Au = (Aγ(x))∗f x ∈ X,

so that the evaluation map evx = (Aγ(x))∗ is continuous and the reproduc-
ing kernel is given by

Γ(x, y) = evxev∗y = γ(x)∗A∗Aγ(y) = γ(x)∗γ(y) x, y ∈ X,

since A∗A is the identity on Im γ(y).

If the map γ is such that the set ∪x∈XIm γ(x) is total in Ĥ, then A is a uni-
tary operator from Ĥ to the RKH space H. It follows that, up to a unitary
equivalence, there is a correspondence between K-valued reproducing ker-
nel Hilbert spaces H, K-kernels of positive type and operator valued maps
γ : X → B(K;H) such that span {γ(x)v | x ∈ X, v ∈ K} = H. Hence the
regularity properties of the elements of a RKH space can be characterized
in terms of the corresponding properties of the inclusion ıΓ , the reproducing
kernel Γ and the map γ. A first example is given by the following proposi-
tion, which discusses the problem of compactness of the inclusion.

Proposition 3 With the above notation, the following facts are equivalent:

1. the inclusion ıΓ is compact from H into KX ;

2. for all x ∈ X, Γ(x, x) ∈ B0(K);

3. for all x, y ∈ X, Γ(x, y) ∈ B0(K);

4. for all x ∈ X, γ(x) ∈ B0(K,H).

Proof. Since Γ(x, y) = γ(x)∗γ(y) and, by polar decomposition, γ(x) =
UxΓ(x, x)

1
2 where Ux is a partial isometry, the equivalence between the last

three conditions follows by the fact that the space of compact operators is
an ideal and Schauder theorem [24].
We show that 1. ⇐⇒ 4.. The topology of KX is the product topology and
Tikhonov theorem implies that ıΓ is compact if and only f 7→ f(x) = γ(x)∗f
is a compact operator from H to K. The claim follows again by Schauder
theorem.
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We end the section recalling the correspondence between vector and scalar
reproducing kernel Hilbert spaces [2, 3].

Scalar RKH spaces correspond to the choice K = C so that B (C; C) = C
and B (C;H) = H. Hence the reproducing kernel Γ takes value in C and
is a function of positive type in the usual sense. Moreover γ(x) is a vector
γx ∈ H such that

γx = Γ(·, x) ∈ H
f(x) = 〈f, γx〉H

Γ(x, y) = 〈γy, γx〉H.

for all x, y ∈ X and f ∈ H.
The importance of the scalar case is due to the fact that the algebraic

properties of any vector valued RKH space can be reduced to the corre-
sponding properties of a scalar RKH space. Let K be a Hilbert space and
H a K-valued RKH space on X with reproducing kernel Γ.
We define the linear map W : H −→ CX×K as

(Wf)(x, v) = 〈f(x), v〉K

Proposition 4 The map W is a unitary operator from H onto the scalar
RKH space H̃ on X ×K whose reproducing kernel is

Γ̃(x, v; y, w) = 〈Γ(x, y)w, v〉K (x, v), (y, w) ∈ X ×K.

Proof. By definition (Wf)(x, v) = 〈f, ev∗xv〉H and (4) implies that W is
injective, so the thesis follows applying Prop. 2 with A = W .

The above construction is not as powerful as it can seem at first glance.
If, for example, we are interested in the case in which the base space has
some regularity property (e.g. local compactness) then it is not guaranteed
that also X ×K shares this property. Usually in this case one resorts to the
linearity of the second entry thus recovering the distinctive role played by
K. Moreover, no simplification arises in the proof of Prop. 1 and Prop. 2
considering the scalar case. Finally given a scalar RKH space H̃ on X ×K,
in general it does not exists a K-valued RKH space H such that WH = H̃,
for a discussion see [2].

3 Measurability

In this section we assume that X is a measurable space and we character-
ize the conditions on the reproducing kernel ensuring that the elements of
the corresponding RKH space are measurable functions. An assumption of
separability will be essential.
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3.1 Notations

Let K be a Hilbert space. A function f : X −→ K is measurable if it is
measurable as a function from X to K, K being endowed with its Borel
σ-algebra; f is weakly measurable if each function x 7→ 〈f(x), v〉K, v ∈ K,
is measurable. If K is separable, the two definitions are equivalent. Let
H be another Hilbert space, a function γ : X −→ B(K;H), is strongly
(resp. weakly) measurable if the map x 7→ γ(x)u is measurable (resp. weakly
measurable) for all u ∈ K. The function γ is measurable if it is measurable
as a map taking values in the Banach space B(K;H) with its uniform norm.
If both H and K are separable, weak and strong measurability of γ are
equivalent and ensure that x 7→ γ(x)∗ is strongly measurable, the function
x 7→ ‖γ(x)‖

K,H
is measurable and the map X 3 x 7→ γ(x)φ(x) ∈ H is

measurable for any measurable function φ : X −→ K [25].

3.2 Main results

Let X be a measurable space and K a separable Hilbert space. Let H be a
K-valued RKH space with reproducing kernel Γ.

The following result is an elementary consequence of the properties of
measurable functions.

Proposition 5 Assume that the RKH space H is separable. The following
conditions are equivalent:

1. the elements of H are [weakly] measurable functions f : X → K;

2. the map Γ : X ×X −→ B(K) is strongly [weakly] measurable;

3. for all x ∈ X, the map X 3 y 7→ Γ(y, x) ∈ B(K) is strongly [weakly]
measurable;

4. the map γ : X −→ B(K;H) is strongly [weakly] measurable.

Proof. Clearly, 2.⇒ 3. and we show the other implications.

1.⇒ 4. Given f ∈ H the map

x 7→ γ(x)∗f = f(x)

is measurable by assumption. This means that γ∗ and, hence, γ are
strongly measurable.

4.⇒ 2. By assumption the map x 7→ γ(x)v is measurable and x 7→ γ(x)∗ is
strongly measurable, so

(x, y) 7→ Γ(x, y)v = γ(x)∗γ(y)v

is measurable, that is, Γ is strongly measurable.
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3.⇒ 1. By assumption, for all x ∈ X and v ∈ K the functions ev∗xv =
Γ(·, x)v ∈ H are measurable. Let now f ∈ H. By (4) there exists
a sequence (fn)n∈N in span {ev∗xv | x ∈ X, v ∈ K} converging to f in
H. The functions fn are measurable and by (1) the sequence converges
point-wise to f , so f is measurable.

The following example (see [25]) shows that the separability of H is essential
in the above proposition.

Example 1 Let X = R with its Borel σ-algebra Σ(R). Fix a subset A ⊂ R
such that A /∈ Σ(R). Let

H =
{
f : R −→ C | f(x) = 0 ∀x /∈ A,

∑
x∈X

|f(x)|2 <∞
}

where
∑

x∈X denotes the summability. The space H is a Hilbert space with
respect to the scalar product

〈f, g〉H =
∑
x∈X

f(x)g(x)

and H is not separable. It is a scalar RKH space on X with reproducing
kernel

Γ(x, y) =
{

1 if x = y ∈ A
0 otherwise

Given f ∈ H, the condition
∑

x∈X |f(x)|2 < +∞ implies that f(x) = 0 for
all but denumerable number of x ∈ X, so f is measurable. However, since
A is not measurable, Γ is not measurable, so that in the statement of the
above proposition 1. does not imply 2. .

If Γ takes values in the space of compact operators, Prop. 5 can be improved,
as shown in the next result.

Proposition 6 Assume that H is separable. If Γ(x, x) ∈ B0(K) for all
x ∈ X, then the following facts are equivalent:

1. the elements of H are measurable functions;

2. the map γ : X −→ B(K;H) is measurable;

3. the map Γ : X ×X −→ B(K) is measurable.

Proof. Prop. 3 ensures that γ(x) ∈ B0(K;H) and Γ(x, y) ∈ B0(K) for all
x, y ∈ X. Moreover Prop. 5 implies that 1. is equivalent to the fact that Γ
or γ are strongly measurable. It follows that 3.⇒ 1. .
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1) ⇒ 2) Since B0 (K;H)∗ = B1 (H;K) is separable, we only need to prove that
the map x 7→ trK (Tγ(x)) is measurable for every T ∈ B1 (H;K). In a
basis (en)n∈N of K we have

trK (Tγ(x)) =
∑

n

〈Tγ(x)en, en〉K =
∑

n

〈γ(x)en, T ∗en〉H.

Since γ is strongly measurable, each term in the sum is a measurable
function of x, hence x 7→ trK (Tγ(x)) is measurable, as claimed.

2) ⇒ 3) Since the map B(K;H) × B(K;H) 3 (A,B) 7→ A∗B ∈ B(K) is con-
tinuous in the uniform norm topology, the map Γ is measurable by
measurability of γ.

4 Integrability

In this section we assume that X is a measurable space endowed with a
σ-finite positive measure µ and we characterize the RKH spaces whose el-
ements are p-integrable functions with respect to the measure µ for any
1 ≤ p ≤ ∞. We always assume that the Hilbert space K is separable.

4.1 Notations

Given 1 ≤ p < ∞, Lp(X,µ;K) denotes the Banach space of (equivalence
classes of) measurable functions f : X → K such ‖f‖p

K is µ-integrable,
whereas L∞(X,µ;K) is the Banach space of measurable functions f : X → K
that are µ-essentially bounded. The corresponding norm in Lp(X,µ;K) is
denoted by ‖·‖p. If K = C, we let Lp(X,µ) := Lp(X,µ; C).
We let q = p

p−1 with the convention p
p−1 = ∞ if p = 1, and p

p−1 = 1 if
p = ∞. We regard the spaces Lp(X,µ;K) and Lq(X,µ;K) in duality with
respect to the pairing

〈φ, ψ〉p =
∫
〈φ(x), ψ(x)〉K dµ(x) φ ∈ Lp(X,µ;K), ψ ∈ Lq(X,µ;K).

Notice that the pairing is linear in the first argument and antilinear in the
second.
If H is a Hilbert space and A : H −→ Lp(X,µ;K) is a bounded linear
operator, we let A∗ : Lq(X,µ;K) −→ H be the adjoint of A with respect to
the pairing above. The operator A∗ always exists and is bounded.
Finally we denote by

∫
f(x)dµ(x) and by w−

∫
f(x)dµ(x) respectively the

Bochner integral and the Pettis (weak) integral of a vector valued function
f with respect to the measure µ.
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4.2 Bounded kernels

We now extend to the vector valued case the definition of bounded kernel
from the theory of integral operators [26]. The following definition holds for
arbitrary kernels (not necessarily of positive type).

Definition 3 Let Γ : X × X −→ B(K) be a strongly measurable function.
Given 1 ≤ p ≤ ∞, the kernel Γ is called p-bounded if

1. for µ-almost all x ∈ X∫
‖Γ(x, y)∗v‖q

K dµ(y) < +∞ ∀v ∈ K;

2. for all φ ∈ Lp(X,µ;K), the map

X 3 x 7−→ w−
∫

Γ(x, y)φ(y) dµ(y)

is in Lq(X,µ;K).

Condition 1. implies that, given φ ∈ Lp(X,µ;K) and v ∈ K, the function y 7→
〈Γ(x, y)φ(y), v〉K is integrable for µ-almost all x ∈ X, so Condition 2. makes
sense. Indeed, since Γ is strongly measurable, 〈Γ(x, ·)φ(·), v〉K is measurable.
Moreover,∫

|〈Γ(x, y)φ(y), v〉K| dµ(y) ≤
∫
‖φ(y)‖K ‖Γ(x, y)∗v‖K dµ(y)

≤ ‖φ‖p ‖Γ(x, ·)∗v‖q . (8)

Hence, the weak integral w−
∫

Γ(x, y)φ(y) dµ(y) exists and is an element of
K for µ-almost all x ∈ X.

In the above definition, boundedness refers to the fact that the operator
LΓ is bounded from Lp(X,µ;K) to Lq(X,µ;K), as shown in the next propo-
sition. However one can show that the condition of p-bounded kernel is not
strictly necessary to have a bounded integral operator (for a discussion see
[26], where for p = 2 our definition coincides with the notion of Carleman
bounded kernel).

Proposition 7 Let Γ : X×X −→ B(K) be a p-bounded kernel (1 ≤ p ≤ ∞).
The operator LΓ : Lp(X,µ;K) −→ Lq(X,µ;K)

(LΓφ)(x) = w−
∫

Γ(x, y)φ(y) dµ(y) for µ−a.a. x ∈ X (9)

is bounded.

12



Proof. The definition of p-bounded kernel ensures that LΓ is everywhere
defined, so by the closed graph theorem it suffices to show that LΓ is a closed
operator. So, suppose that φn → φ in Lp and LΓφn → ψ in Lq. Eq. (8)
implies that∣∣∣∣〈[

w−
∫

Γ(x, y) (φn(y)− φ(y)) dµ(y)
]
, v

〉
K

∣∣∣∣ ≤ ‖φn − φ‖p ‖Γ(x, ·)∗v‖q ∀v ∈ K

for µ-almost all x ∈ X, so that the weak limit of (LΓφn)(x) is (LΓφ)(x)
µ-almost everywhere. By the uniqueness of the limit, ψ = LΓφ so that the
graph of LΓ is closed, as claimed.

The following corollary gives a sufficient condition to have a p-bounded
kernel.

Corollary 1 Let Γ : X×X → B(K) be a strongly measurable function such
that ∫

‖Γ(x, y)‖q
K,K

d(µ⊗ µ)(x, y) < +∞, (10)

then Γ is a p-bounded kernel and

(LΓφ)(x) =
∫

Γ(x, y)φ(y) dµ(y).

Proof. Notice that, since K is separable, the map x 7→ ‖Γ(x, y)‖
K,K

is mea-
surable, so (10) makes sense. Assume for example p > 1. Since ‖Γ(x, y)∗v‖K ≤
‖Γ(x, y)‖

K,K
‖v‖K, Fubini theorem ensures that, for µ-almost all x ∈ X, the

function y 7→ ‖Γ(x, y)∗v‖K is in Lq for all v ∈ K, so that Condition 1 of
Definition 3 follows. We now show that, if φ ∈ Lp(X,µ;K), the map

X 3 y 7→ Γ(x, y)φ(y) ∈ K

is integrable and LΓφ ∈ Lq(X,µ;K). Indeed,∫ ∥∥∥∥∫
Γ(x, y)φ(y) dµ(y)

∥∥∥∥q

K
dµ(x)

≤
∫ (∫

‖Γ(x, y)‖
K,K

‖φ(y)‖K dµ(y)
)q

dµ(x)

≤
∫ (∫

‖Γ(x, y)‖q
K,K

dµ(y)
) (∫

‖φ(y)‖p
K dµ(y)

) 1
p−1

dµ(x)

= ‖φ‖q
p

∫
‖Γ(x, y)‖q

K,K
d(µ⊗ µ)(x, y) <∞.

The case p = 1 is treated in a similar manner.

13



4.3 Main results

Let X be a measurable space endowed with a σ-finite measure µ and K a
separable Hilbert space. Let H be a K-valued RKH space with reproducing
kernel Γ.

Proposition 8 Assume that H is a separable RKH space of measurable
functions. Given 1 ≤ p ≤ ∞, the following conditions are equivalent.

1. the elements of H belongs to Lp(X,µ;K);

2. the reproducing kernel Γ of H is q-bounded with q = p
p−1 .

If one of the above conditions holds, then

(i) the inclusion ıΓ : H → Lp(X,µ;K) is a bounded linear map;

(ii) its adjoint ı∗
Γ

: Lq(X,µ;K) → H is given by

ı∗
Γ
φ = w−

∫
γ(x)φ(x) dµ(x). (11)

(iii) ıΓı
∗
Γ

= LΓ, where LΓ is the integral operator of kernel Γ given by (9).

Proof.

1.⇒ 2. We prove that the inclusion ıΓ : H → Lp(X,µ;K) is bounded. If
fn → f in H is such that ıΓfn → φ in Lp, then (ıΓfn)(x) → f(x) for
all x ∈ X, and so φ = ıΓf by the uniqueness of the limit. The closed
graph theorem ensures that ıΓ is continuous.

We show (11). Given φ ∈ Lq(X,µ;K), for all f ∈ H

〈
ı∗
Γ
φ, f

〉
H = 〈φ, ıΓf〉p =

∫
〈φ(x), f(x)〉K dµ(x) =

∫
〈γ(x)φ(x), f〉H dµ(x).

It follows that the map x 7→ γ(x)φ(x) is weakly integrable and ı∗
Γ
φ =

w−
∫
γ(x)φ(x) dµ(x).

We now show that Γ is a q-bounded kernel. For all x ∈ X and v ∈ K,
the function Γ(x, ·)∗v = ev∗xv belongs to H and, by assumption, is
p-integrable, so that condition 1 of Definition 3 is satisfied. Moreover,
if φ ∈ Lq(X,µ;K)

w−
∫

Γ(x, y)φ(y) dµ(y) = w−
∫
γ(x)∗γ(y)φ(y) dµ(y) = evxı

∗
Γ
φ = (ıΓı

∗
Γ
φ)(x)

for µ-almost all x. Since ıΓı
∗
Γ
φ ∈ Lp(X,µ;K), condition 2 of Defini-

tion 3 holds and, in particular, ıΓı
∗
Γ

= LΓ .
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2.⇒ 1. Since µ is σ-finite, there is an increasing sequence (Xn)n∈N of measur-
able subsets of X such that µ(Xn) < +∞ and ∪n∈NXn = X. Given
n ∈ N, let

Cn = {x ∈ Xn | ‖γ(x)‖K,H
≤ n}.

The subsets Cn are measurable, Cn ⊂ Cn+1, ∪n∈NCn = X, and
µ(Cn) <∞.

Let f ∈ H. Define
fn(x) = χCn(x)f(x),

χCn being the characteristic function of the set Cn. Then

‖fn(x)‖K ≤ χCn(x) ‖γ(x)∗f‖K ≤ nχCn(x) ‖f‖H ,

so fn ∈ Lp(X,µ;K). If φ ∈ Lq(X,µ;K), we have

〈fn, φ〉p =
∫
〈χCn(x)f(x), φ(x)〉H dµ(x)

=
〈
f,

∫
χCn(x)γ(x)φ(x) dµ(x)

〉
H
.

The norm of the second term in the scalar product has the following
upper bound∥∥∥∥∫

χCn(x)γ(x)φ(x) dµ(x)
∥∥∥∥2

H

=
∫ (∫

〈χCn(y)γ(y)φ(y), χCn(x)γ(x)φ(x)〉H dµ(y)
)

dµ(x)

=
∫ 〈

w−
∫
χCn(y)Γ(x, y)φ(y) dµ(y), χCn(x)φ(x)

〉
K

dµ(x)

= 〈LΓ(χCnφ), (χCnφ)〉p ≤ ‖LΓ‖q,p
‖φ‖2

q ,

since by assumption and Prop. 7 LΓ is an everywhere defined bounded
operator. We thus have

| 〈fn, φ〉p | ≤ ‖f‖H ‖LΓ‖
1/2
q,p

‖φ‖q . (12)

For 1 ≤ p < ∞, we take the supremum over φ ∈ Lq = (Lp)∗ with
‖φ‖q ≤ 1 and we get

‖fn‖p ≤ ‖LΓ‖
1/2
q,p

‖f‖H .

By monotone convergence theorem, this implies ‖f‖K ∈ Lp(X,µ),
so that f ∈ Lp(X,µ;K). For p = ∞, (12) implies that L1 3 φ 7→
〈fn, φ〉p ∈ C is continuous so fn ∈ L∞ and

‖fn‖∞ ≤ ‖LΓ‖
1/2
q,p

‖f‖H .

This implies f ∈ L∞.
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The fact that the elements of Lp(X,µ;K) are equivalence classes implies
that, in general, the inclusion operator ıΓ : H −→ Lp(X,µ;K) is not injec-
tive. The following result characterizes Ker ıΓ under the assumption that
γ(x) is compact.

Proposition 9 Let H be a separable K-valued RKH space with a q-bounded
reproducing kernel Γ. Assume that Γ(x, x) ∈ B0(K) for all x ∈ X and define

S = {x ∈ X | µ(Bx,ε) > 0 ∀ε > 0},

where Bx,ε = {y ∈ X | ‖Γ(y, y) + Γ(x, x)− Γ(x, y)− Γ(y, x)‖
K,K

< ε2}. Let
ıΓ : H → Lp(X,µ;K) be the inclusion, then

Ker ıΓ = {f ∈ H | f(x) = 0 ∀x ∈ S}. (13)

Proof. First of all, notice that the definition of Γ gives that

Bx,ε = {y ∈ X | ‖γ(y)− γ(x)‖
K,H

< ε},

which is measurable since γ is measurable by Propositions 3 and 6. Since
H and K are separable, the space B0 (K;H) is separable. Observing that
γ(x) ∈ B0 (K;H) for all x ∈ X, it follows there is a denumerable family
{Bxn,εn | n ∈ I} such that, if x ∈ X and ε > 0,

Bx,ε = ∪n∈JBxn,εn

where J ⊂ I. Hence X \S = {x ∈ X | ∃ε > 0 µ(Bx,ε) = 0} has null measure
being the denumerable union of null sets.

Let now f ∈ H such that f(x) = 0 for all x ∈ S, then f = 0 in Lp(X,µ).
Conversely, suppose there exists x ∈ S such that f(x) 6= 0, that is, γ(x)∗f 6=
0. For ε sufficiently small, we have that γ(y)∗f 6= 0 for all y ∈ Bx,ε. In par-
ticular, f(y) = γ(y)∗f 6= 0 for all y ∈ Bx,ε, which has nonzero measure by
definition of S. It follows that f 6= 0 in Lp(X,µ).

For p = 2 we can compute ı∗
Γ
ıΓ , which is known as frame operator in the

context of frame theory (see, for example, [27]).

Corollary 2 Let H be a separable K-valued RKH space whose elements are
square integrable functions. Then

ı∗
Γ
ıΓ = w−

∫
γ(x)γ(x)∗ dµ(x). (14)

In particular, the following conditions are equivalent:

(i) ıΓ is a Hilbert-Schmidt operator;
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(ii) Γ(x, x) is a trace class operator for almost all x ∈ X and∫
trK Γ(x, x) dµ(x) < +∞;

(iii) LΓ is a trace class operator.

If one of the above conditions holds, the integral in (11) converges in norm
and the integral in (14) converges in trace norm.

Proof. Eq. (14) follows from (11) and (3). We now prove that (i) ⇐⇒
(ii). The separability of K and the strong measurability of Γ ensure that
X 3 x 7→ trK Γ(x, x) ∈ [0,+∞] is measurable. Let (fn)n∈N be a Hilbert
basis of H. Since ı∗

Γ
ıΓ is a positive operator and x 7→ |〈γ(x)γ(x)∗fn, fn〉H|

2

are positive functions the monotone convergence theorem gives

trH ı∗ΓıΓ =
∑

n

∫
〈γ(x)γ(x)∗fn, fn〉H dµ(x)

=
∫

trH γ(x)γ(x)∗ dµ(x)

=
∫

trK γ(x)∗γ(x) dµ(x)

=
∫

trK Γ(x, x) dµ(x).

The equivalence of (i) and (ii) follows. The equivalence between (i) and (iii)
is trivial since LΓ = ıΓı

∗
Γ
.

Now we prove the statements about (11) and (14). Since γ : X −→
B(K;H) is strongly measurable by Proposition 5, for φ ∈ L2(X,µ;K) the
map x 7→ γ(x)φ(x) is measurable. Moreover,

‖γ(x)φ(x)‖2
H = 〈Γ(x, x)φ(x), φ(x)〉K ≤ ‖Γ(x, x)‖

K,K
‖φ(x)‖2

K

≤ trK Γ(x, x) ‖φ(x)‖2
K .

Condition (ii) ensures that x 7→ γ(x)φ(x) is in L1(X,µ;K).
We come to (14). The strong measurability of γ ensures that x 7→

γ(x)γ(x)∗ is measurable as a map from X into B1(H). Indeed, since B1(H)
is separable, it is enough to show that for all B ∈ B(H) = B1(H)∗ the map
x 7→ trH (Bγ(x)γ(x)∗) is measurable. Indeed,

trH (Bγ(x)γ(x)∗) =
∑

n

〈Bγ(x)γ(x)∗fn, fn〉H

=
∑

n

〈γ(x)∗fn, γ(x)∗B∗fn〉K.

and the maps x 7→ γ(x)∗fn and γ(x)∗B∗fn are measurable. Since γ(x)γ(x)∗

is a positive operator, its norm in B1(H) is trH (γ(x)γ(x)∗) = trK Γ(x, x).
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Convergence of the integral (14) in B1(H) then follows immediately from
condition (ii).

4.4 Compactness

We now discuss the problem of the compactness of the inclusion of the
RKH space H into Lp(X,µ;K). If K = C, the next proposition is an easy
consequence of a well known fact in the framework of integral operators
(see, for example, [26] for a complete discussion about the compactness of
integral operators in L2(X,µ)).

Proposition 10 Suppose that H is a separable RKH space such that Γ(x, x) ∈
B0(K) for all x ∈ X and x 7→ Γ(x, x) is measurable. Let 1 ≤ p <∞, if∫

X
‖Γ(x, x)‖p/2

K,K
dµ(x) < +∞,

then H ⊂ Lp(X,µ;K) and the inclusion ıΓ : H → Lp(X,µ;K) is compact.

Proof. Prop. 5 ensures that the elements of H are measurable functions.
Moreover, the map x 7→ ‖γ(x)‖

K,H
= ‖Γ(x, x)‖1/2

K,K
is in Lp(X,µ). For f ∈ H,

we have ‖f(x)‖K ≤ ‖γ(x)‖
K,H

‖f‖H, thus showing that f ∈ Lp(X,µ;K). If
(fn)n∈N is a sequence in H which converges weakly to 0, then fn(x) =
γ(x)∗fn → 0 in K for all x ∈ X, since γ(x) is compact by Prop. 3. Since
‖fn(x)‖K ≤ ‖γ(x)‖

K,H
‖fn‖H and supn ‖fn‖H <∞, it follows by dominated

convergence theorem that fn → 0 in Lp(X,µ;K). This shows that ıΓ maps
weakly convergent sequences into norm convergent sequences, so ıΓ is com-
pact.

Suppose µ is a finite measure. If H is a separable RKH space of scalar
valued measurable functions, and H ⊂ L1(X,µ), the inclusion ıΓ : H −→
L1(X,µ) is compact as an easy consequence of a result due to [28]. In the
general case, with no restriction on µ and the dimension of K, we have the
following fact.

Proposition 11 Suppose that H is a separable RKH space such that H ⊂
L1(X,µ;K). If Γ(x, x) ∈ B0(K) for all x ∈ X, then the inclusion ıΓ : H →
L1(X,µ;K) is compact.

Proof. We divide the proof in three steps.

1. Suppose that there exists a disjoint sequence of measurable subsets
(Ej)j∈N, with µ(Ej) <∞, and operators γj ∈ B0(K;H) such that

γ(x) =
∑
j∈N

χEj (x)γj ∀x ∈ X. (15)
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The condition that H ⊂ L1(X,µ;K) implies that for all f ∈ H∑
j

µ(Ej)
∥∥γ∗j f∥∥

K =
∫
‖γ(x)∗f‖K dµ(x) =

∫
‖f(x)‖K dµ(x) = ‖f‖1 ,

i.e. the sequence
(
µ(Ej)γ∗j f)

)
j∈N

is in `1(K). The linear operator

T : H → `1(K)
(Tf)j = µ(Ej)γ∗j f

is bounded since

‖Tf‖`1(K) = ‖f‖1 ≤ ‖ıΓ‖H,1
‖f‖H (16)

Suppose (fn)n∈N is a sequence in H converging weakly to 0. For all
j ∈ N, by compactness of γj , (Tfn)(j) → 0 in K. Moreover, by con-
tinuity of T , Tfn → 0 weakly. Thus, by Lemma 1 in the appendix,
‖Tfn‖`1(K) → 0. This fact and (16) show that ıΓ maps weakly conver-
gent sequences in H into norm convergent sequences in L1, hence ıΓ is
compact.

2. Now, without making any assumption on the map γ, we claim that
there exist maps γ1, γ2 : X −→ B(K;H) such that: (i) γ1 is as in (15);
(ii) γ2(x) ∈ B0(K;H) for all x, and the map x 7→ ‖γ2(x)‖K,H

is in L1;
(iii) γ = γ1 + γ2.

To this aim, let (Xn)n∈N be an increasing sequence of measurable
subsets of X such that µ(Xn) < ∞ and X =

⋃
nXn. For all n ∈ N

define by induction

A0 = ∅, An =
{
x ∈ Xn | x 6∈ An−1 and ‖γ(x)‖

K,H
≤ n

}
.

Each An is measurable, µ(An) < ∞ for all n, An ∩ Am = ∅ if n 6= m,
and

⋃
nAn = X. By Prop. 3, γ(x) ∈ B0(K;H) for all x, and the map

γ : X −→ B0(K;H) is measurable by Prop. 6. The function χAnγ is
thus integrable as a map taking values in B0(K;H), so there is a step
function ηn : X → B0(K;H) supported in An such that∫

An

‖γ(x)− ηn(x)‖
K,H

dµ(x) ≤ 1
2n
.

The map
γ1 =

∑
n∈N

χAnηn

(which is well defined since the sets in the sequence (An)n∈N are dis-
joint) is as in (15). Let γ2 = γ − γ1, then γ2(x) ∈ B0(K;H) for all x,
and∫
‖γ2(x)‖K,H

dµ(x) =
∑

n

∫
An

‖γ(x)− ηn(x)‖
K,H

dµ(x) ≤
∑

n

1
2n

= 2,
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so that the claim follows.

3. Let γ = γ1 + γ2 be as in 2.. For i = 1, 2, define Γi(x, y) = γi(x)∗γi(y),
and let Hi be the RKH spaces with reproducing kernel Γi. By Prop. 2,
we have two partial isometries

Ai : H −→ Hi, (Aif) (x) = γi(x)∗f.

If f ∈ H, then∫
‖(A1f) (x)‖K dµ(x) =

∫
‖(γ(x)− γ2(x))

∗ f‖K dµ(x)

≤
∫
‖f(x)‖K dµ(x) + ‖f‖H

∫
‖γ2(x)‖K,H

dµ(x) <∞,

which shows that H1 ⊂ L1(X,µ;K). Using the expression (7) for
the evaluation map in H1, we see that H1 is as in step 1), hence the
inclusion ıΓ1

: H1 −→ L1 is compact. On the other hand, by Prop. 10
H2 ⊂ L1(X,µ;K) and the inclusion ıΓ2

: H2 −→ L1 is compact. In
conclusion, ıΓ = ıΓ1

A1 + ıΓ2
A2 is compact.

It is easy to check that the requirement Γ(x, x) ∈ B0(K) for all x is essential
in the above proposition, as illustrated by the following simple example.

Example 2 Suppose K is infinite dimensional and choose X to be a single
point {x}. The space of functions KX , naturally identified with K, is a RKH
space of K valued functions with reproducing kernel Γ(x, x) = I. Letting µ
be a non-null measure on X, Lp(X,µ;K) is identified as a Banach space
with KX endowed with this structure of RKH space. But the identity map
K ' KX → Lp(X,µ;K) ' K is not compact.

5 Continuity

In this section we assume that X is a topological space and we characterize
the RKH spaces whose elements are continuous functions. For the scalar
case see [3].

5.1 Notations

Let X be a locally compact topological space and K a Hilbert space (in
this section we do not assume that K is separable). We denote by C (X;K)
the vector space of continuous functions f : X → K. The space C (X;K)
is endowed with the topology of compact convergence, so that a sequence
(fn)n∈N in C (X;K) converges to a function f if

lim
n→+∞

sup
x∈C

‖fn(x)− f(x)‖K = 0
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for every compact set C in X.
If H is another Hilbert space, a map γ : X → B(K;H) is strongly continuous
if the function x 7→ γ(x)v is continuous from X to H for all v ∈ K.

5.2 Main result

Let X be a locally compact topological space and K a Hilbert space. Let H
be a K-valued RKH space with reproducing kernel Γ.

Proposition 12 The following facts are equivalent:

1. the elements of H are continuous functions;

2. the kernel Γ is locally bounded and, for all x ∈ X, the map Γ(·, x) is
strongly continuous.

If one of the above conditions holds, the inclusion operator ıΓ : H → C (X;K)
is continuous.

Proof.

1) ⇒ 2) Given x ∈ X and v ∈ K, by definition

Γ(·, x)v = ev∗xv ∈ H ⊂ C (X;K) .

so that Γ(·, x) is strongly continuous. We show that Γ is locally
bounded. Given x0 ∈ X, let C be a compact neighbourhood of x0

(C exists since X is locally compact). For any f ∈ H, the continuity
of f ensures that

sup
x∈C

‖evx(f)‖K = sup
x∈C

‖f(x)‖K ≤Mf .

The principle of uniform boundedness implies

sup
x∈C

‖evx‖H,K
≤M.

The claim follows observing that

sup
x,y∈C

‖Γ (x, y)‖
K,K

= sup
x,y∈C

(∥∥evxev∗y
∥∥
K,K

)
≤ sup

x,y∈C

(
‖evx‖H,K

‖evy‖H,K

)
≤M2.

2) ⇒ 1) Let
H0 = span {Γ (·, x) v | x ∈ X, v ∈ K} .

The elements of H0 are continuous by hypothesis and (4) ensures that
H0 is total.
Given f ∈ H and x0 ∈ X, we prove that f is continuous in x0.
Let (fn)n∈N be a sequence in H0 converging to f . Since Γ is locally
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bounded the convergence is uniform on a neighbourhood of x0, so f is
continuous at x0.
In particular the inclusion operator is continuous, since a sequence of
functions (fn)n∈N converging to f in H converges uniformly to f on
each compact subset of X.

The following corollary gives a simple condition ensuring that H is separable

Corollary 3 Let H is a K-valued RKH space of continuous functions. As-
sume that X and K are separable, then H is separable.

Proof. The separability of X ensures that there is a denumerable dense
subset X0 ⊆ X and, since K is separable,

S =
⋃

x∈X0

Im γ(x) ⊂ H

is separable, too. We show that S is total, so that H is separable. Indeed,
let f ∈ S⊥, then f ∈ ker γ(x)∗ for all x ∈ X0, that is, f(x) = evxf = 0.
Since f is continuous and X0 is dense, f = 0.

We now come to the problem of characterizing the compactness of the
inclusion operator.

Proposition 13 Let H be a K-valued RKH space with reproducing kernel
Γ. The following facts are equivalent:

1. the inclusion ıΓ : H → C (X;K) is compact;

2. Γ is continuous with respect to the uniform norm topology and Γ(x, x)
is a compact operator for all x ∈ X.

Proof. We denote by B the unit ball in H. Condition 1 is equivalent to
show that ıΓ (B) is precompact in C (X;K). Due to the local compactness
of X this is equivalent (Ascoli-Arzelá theorem) to

a) {f(x) = γ∗(x)f | f ∈ B} is precompact in K for every x ∈ X;

b) ıΓ (B) is equicontinuous.

Condition a) is equivalent to the fact that γ(x)∗ is compact, so is Γ(x, x) for
all x ∈ X. Moreover, since

sup
f∈B

‖(ıΓf)(x)− (ıΓf)(y)‖K = ‖γ(x)∗ − γ∗(y)‖
H,K

=
(
‖Γ(x, x) + Γ(y, y)− Γ(x, y)− Γ(y, x)‖

K,K

) 1
2
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condition b) is equivalent to the continuity of Γ with respect to operator
norm topology.

Notice that the correspondence given by Prop. 4 is not useful since X × K
is not locally compact and Ascoli-Arzelá theorem is no longer true (as an
equivalence).

5.3 Integrability and continuity

In many examples K is a separable Hilbert space and X is a locally compact
second countable Hausdorff space endowed with a positive Radon measure
µ. Hence X is separable and µ is a σ-finite measure.

If Γ is a K-kernel of positive type such that

1. Γ is p
p−1 -bounded with respect to µ for some 1 ≤ p ≤ ∞,

2. Γ is locally bounded and strongly continuous in the first entry,

the results of Section 4 and 5 ensure that the elements of the corresponding
RKH space H are continuous p-integrable functions f : X → K and these
conditions are also necessary.
By Corollary 3 H is a separable Hilbert space and the inclusion ıΓ can be
regarded as a bounded operator from H either to Lp(X,µ;K) or to C(X,K).
In the second case ıΓ is injective, whereas in the first one

Ker ıΓ = {f(x) = 0 | x ∈ suppµ}, (17)

where suppµ is the support of the measure µ.
Finally, assume that X is a compact set, Γ is bounded, Γ(·, x) is strongly

continuous and Γ(x, x) is a compact operator for all x ∈ X. Since µ is finite,
the map x 7→ Γ(x, x) is p-integrable, so Γ is q-bounded for all 1 ≤ p < ∞
and the inclusion ıΓ is always compact as a map in Lp(X,µ;K). However, in
order ıΓ be compact as a map in C(X;K) ⊂ Lp(X,µ;K), it is necessary (and
sufficient) that Γ is continuous from X × X into B0(K) with the uniform
norm topology .

6 Mercer theorem

In this section we characterize the RKH spaces of K-valued functions that
are subspaces of L2(X,µ;K) in terms of the spectral decomposition of the
integral operator LΓ .

6.1 Notations

If K is a Hilbert space and v1, v2 ∈ K, we let v1⊗v2 be the rank one operator
in K defined by

(v1 ⊗ v2)(w) = 〈w, v2〉Kv1 w ∈ K.
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If Σ is a σ-algebra and Σ 3 E 7→ P (E) ∈ B(K) is a projection valued
measure, for all v, w ∈ K we denote by 〈dP (λ)v, w〉K the bounded complex
measure defined by E 7→ 〈P (E)v, w〉K. If (vi)i∈I is a summable family in K,
we denote by

∑
i∈I vi the sum with respect to the notion of summability.

6.2 Main result

The following proposition extends Mercer theorem to a noncompact set,
compare with [13].
Let X be a measurable space endowed with a σ finite measure µ and K
a separable Hilbert space. Let H be a K-valued RKH space on X with
reproducing kernel Γ. We assume that H is separable, Γ is 2-bounded with
respect to µ and the inclusion ıΓ : H → L2(X,µ;K) is injective.

We let
LΓ =

∫
σ
Γ

λ dP (λ)

be the spectral decomposition of the integral operator LΓ = ıΓı
∗
Γ
, where σΓ

is the spectrum of LΓ and E 7→ P (E) is the spectral measure (since LΓ is a
positive bounded operator, σΓ is a compact subset of [0,+∞) ).

Proposition 14 With the above assumptions the following facts hold

ıΓ(H) = {φ ∈ L2(X,µ;K) |
∫

σ
Γ

1
λ
〈dP (λ)φ, φ〉2 < +∞} (18)

〈f, g〉H =
∫

σ
Γ

1
λ
〈dP (λ)ıΓf, ıΓg〉2 ∀f, g ∈ H. (19)

Proof. The polar decomposition of the adjoint ı∗
Γ

gives

ı∗
Γ

= W (ıΓı
∗
Γ
)

1
2 = WL

1
2
Γ ,

where W is a partial isometry from L2(X,µ;K) to H with

W ∗W = P (σΓ \ {0}) and WW ∗ = IH (20)

where the last equality holds since ıΓ is injective. It follows

ıΓ = L
1
2
ΓW

∗, (21)

so that ıΓ(H) is the range of L
1
2
Γ and the spectral theorem implies (18).

To show (19) let f, g ∈ H. Recalling (20),

〈f, g〉H = 〈W ∗f,W ∗g〉2 =
∫

σ
Γ

〈dP (λ)W ∗f,W ∗g〉2 =
∫

σ
Γ

1
λ
〈dP (λ)ıΓf, ıΓg〉2
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where the last integral makes sense since, by (21),

〈dP (λ)ıΓf, ıΓg〉2 =
〈

dP (λ)L
1
2
ΓW

∗f, L
1
2
ΓW

∗g

〉
2

= λ 〈dP (λ)W ∗f,W ∗g〉2 .

If X is a locally compact second countable Hausdorff space endowed with a
positive Radon measure µ such that suppµ = X, to ensure both that H is
separable and that ıΓ is injective as a map into L2(X,µ;K), it is sufficient
that Γ is 2-bounded, locally bounded and strongly continuous in the first
entry. In this setting, (18) allows us to identify the elements of H with the
only continuous functions on X whose equivalence class belongs to the range

of L
1
2
Γ . With this identification, (19) implies that L

1
2
Γ is a unitary operator

from KerL⊥
Γ

onto H, compare with [10].

If ıΓ is not injective, L
1
2
Γ is a unitary operator from KerL⊥

Γ
onto Ker ı⊥

Γ

(see (13) and (17) for a characterization).
As a consequence of the above result we have the following version of

Mercer theorem. Let ν be a positive σ-finite measure defined on the Borel
σ-algebra Σ(σΓ) such that ν(E) = 0 if and only if P (E) = 0 (it exists and
is unique, up to an equivalence, by Hellinger-Hahn theorem).

Theorem 1 With the assumptions of Th. 14, for all x, y ∈ X and v, w ∈ K
there is a complex measurable function ρx,y;v,w defined on σΓ such that

〈Γ(x, y)v, w〉K =
∫

σ
Γ

λ ρx,y;v,w(λ)dν(λ). (22)

Given E ∈ Σ(σΓ) with 0 6∈ E, any basis of ImP (E) is of the form (ıΓφn)n∈I ,
the family (〈v, φn(y)〉K〈φn(x), w〉K)n∈I is summable, the function χEρx,y;v,w

is ν-integrable and∫
E
ρx,y;v,w(λ)dν(λ) =

∑
n∈I

〈v, φn(y)〉K〈φn(x), w〉K. (23)

If x = y and v = w, given a basis for ImLΓ of the form (ıΓφn)n∈I , the
following two conditions are equivalent

1. the function ρx,x;v,v is ν-integrable;

2. ıΓ(γ(x)v) ∈ ImLΓ.

If one of the above conditions holds, the family
(
|〈φn(x), v〉K|2

)
n∈I

is summable
and ∫

σ
Γ

ρx,x;v,v(λ)dν(λ) =
∥∥L−1

Γ
ıΓγ(x)v

∥∥2

2
=

∑
n∈I

|〈φn(x), v〉K|
2. (24)
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Proof. Let W be the partial isometry defined in the previous proof so

that ıΓ = L
1
2
ΓW

∗. Given x, y ∈ X and v, w ∈ K, the definition of ν implies
that the bounded complex measure 〈dP (λ)W ∗γ(y)v,W ∗γ(x)w〉2 has density
πx,y;v,w ∈ L1(σΓ , ν) with respect to ν. Let

ρx,y;v,w(λ) =
{

1
λπx,y;v,w(λ) λ 6= 0

0 λ = 0
,

then ρx,y;v,w is measurable and λ 7→ λρx,y;v,w(λ) is ν-integrable, so that∫
σ
Γ

λρx,y;v,w(λ)dν(λ) =
∫

σ
Γ
\{0}

〈dP (λ)W ∗γ(y)v,W ∗γ(x)w〉2

= 〈P (σΓ \ {0})W
∗γ(y)v,W ∗γ(x)w〉2

= 〈γ(y)v, γ(x)w〉H = 〈Γ(x, y)v, w〉K
since (20).

Let now E ∈ Σ(σΓ) be such that 0 6∈ E. This last fact and the spectral

theorem imply that ImP (E) ⊂ ImL
1
2
Γ = ıΓ(H). Hence, any basis of ImP (E)

is of the form (ıΓφn)n∈I . Since 0 6∈ E, χE ρx,y;v,w is ν-integrable and∫
E
ρx,y;v,w(λ)dν(λ) =

∫
σ
Γ

χE(λ)
λ

〈dP (λ)W ∗γ(y)v,W ∗γ(x)w〉2

=
∫

σ
Γ

1
λ
〈dP (λ)P (E)W ∗γ(y)v, P (E)W ∗γ(x)w〉2

=
〈
L
− 1

2
Γ P (E)W ∗γ(y)v, L

− 1
2

Γ P (E)W ∗γ(x)w
〉

2

,(25)

where P (E)W ∗γ(x)w and P (E)W ∗γ(y)v are in ImL
1
2
Γ .

Let now J a finite subset of I. Since ıΓφn = L
1
2
ΓW

∗φn and WW ∗ = IH∑
n∈J

〈
L
− 1

2
Γ P (E)W ∗γ(y)v, ıΓφn

〉
2

〈
ıΓφn, L

− 1
2

Γ P (E)W ∗γ(x)w
〉

2

=
∑
n∈J

〈
W ∗γ(y)v, L

− 1
2

Γ ıΓφn

〉
2

〈
L
− 1

2
Γ ıΓφn,W

∗γ(x)w
〉

2

=
∑
n∈J

〈W ∗γ(y)v,W ∗φn〉2 〈W
∗φn,W

∗γ(x)w〉2

=
∑
n∈J

〈γ(y)v, φn〉H〈φn, γ(x)w〉H =
∑
n∈J

〈v, φn(y)〉K〈φn(x), w〉K,

where we used that γ(x)∗ = evx. Since the family (ıΓφn)n∈I is basis for
ImP (E)∑

n∈I

〈
L
− 1

2
Γ P (E)W ∗γ(y)v, ıΓφn

〉
2

〈
ıΓφn, L

− 1
2

Γ P (E)W ∗γ(x)w
〉

2
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is summable with sum
〈
L
− 1

2
Γ P (E)W ∗γ(y)v, L

− 1
2

Γ P (E)W ∗γ(x)w
〉

2

, and (23)

follows by means of (25).
Finally, if x ∈ X and v ∈ K, the measure 〈dP (λ)W ∗γ(x)v,W ∗γ(x)v〉2 is

positive, so ρx,x;v,v is positive ν-almost everywhere. The spectral theorem

implies that ρx,x;v,v is ν-integrable if and only if W ∗γ(x)v ∈ ImL
1
2
Γ . By

means of (21), this condition is equivalent to ıΓγ(x)v ∈ ImLΓ and, if it is
satisfied, ∫

σ
Γ

ρx,x;v,v(λ)dν(λ) =
∥∥∥∥L− 1

2
Γ W ∗γ(x)v

∥∥∥∥2

2

. (26)

Let (φn)n∈I be a family in H such that (ıΓφn)n∈I is a basis of ImLΓ (such
a basis exists since the closure of H in L2(X,µ;K) is ImLΓ). Reasoning as
above ∑

n∈I

|〈φn(x), v〉K|
2 =

∑
n∈I

∣∣∣∣〈L− 1
2

Γ ıΓφn,W
∗γ(x)v

〉
2

∣∣∣∣2 .
The sum in the right side is finite since W ∗γ(x)v ∈ ImL

1
2
Γ and its sum is∥∥∥∥L− 1

2
Γ W ∗γ(x)v

∥∥∥∥2

2

. Eq. (26) implies (24).

Eq. (22) can be seen as an application of the result of Section 10 of [16]
applied to the projection measure E 7→WP (E)W ∗.

Assume now that the integral operator LΓ has a pure point spectrum.
Eq. (18) implies that there is a family (φn)n∈I ∈ H such that (ıΓφn)n∈I is a
basis of KerL⊥

Γ
and

LΓ =
∑
n∈I

λn ıΓφn ⊗2 ıΓφn,

where λn > 0 and the sum converges in the strong operator topology. In
this setting (19) becomes

ıΓ(H) = {φ ∈ L2(X,µ;K) |
∑

n

1
λn
| 〈φ, φn〉2 |

2 < +∞}.

Moreover, by (19) the family (
√
λnφn)n∈I is a basis of H, so

Γ(x, y) =
∑
n∈I

λnevx(φn ⊗H φn)ev∗y =
∑
n∈I

λnφn(x)⊗K φn(y) =
∑
n∈I

Γn(x, y),

(27)
where Γn(x, y) = λnφn(x) ⊗K φn(y) is a K-kernel of positive type, the sum
converges in the strong operator topology and absolutely in the weak oper-
ator topology. Finally, if f, g ∈ H, (19) gives

〈f, g〉H =
∑
n∈I

1
λn

〈ıΓf, ıΓφn〉2 〈ıΓφn, ıΓg〉2 =
∑
n∈I

1
λ2

n

∫
〈Γn(y, x)f(x), g(y)〉K dµ(x)dµ(y)
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since, by definition of Γn, 〈Γn(y, x)f(x), g(y)〉K = λn〈f(x), φn(x)〉K〈φn(y), g(y)〉K.
Hence Mercer theorem can be seen as the decomposition of the RKH H in
the direct sum of RKH spaces Hn with reproducing kernel Γn and this de-
composition is defined by the spectral structure of LΓ , see Prop. 19 of [3].
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A Vector Valued Shur lemma

The following lemma is needed for the proof of Prop. 11 and it is well
known for K = C (Schur lemma). We denote by `1(K) the Banach space
L1(N, ν;K), ν being the counting measure of N. Similarly, we write `∞(K)
for the Banach dual L∞(N, ν;K) of `1(K).

Lemma 1 Suppose (fn)n∈N is a sequence of elements in `1(K) such that

(i) for all j ∈ N, fn(j) → 0 in K;

(ii) fn → 0 weakly in `1(K).

Then fn → 0 in `1(K).

Proof. We report a rearrangement of the proof given in [24, p. 135] for
K = C.

Let ball `∞(K) be the unit ball of `∞(K) endowed with the weak-∗ topol-
ogy. Since `1(K) is separable, ball `∞(K) is metrizable. Fix a sequence
(vh)h∈N which is dense in the unit ball of K. If φ, ψ ∈ ball `∞(K), define

d(φ, ψ) =
∞∑

j=0

2−j
∞∑

h=0

2−h |〈vh, φ(j)− ψ(j)〉K| .

Then, d(φ, ψ) < ∞, and d is a metric in ball `∞(K). We claim that d
defines the weak-∗ topology of ball `∞(K). Indeed, given (φn)n∈N and ψ in
ball `∞(K), d(φn, ψ) → 0 if and only if

lim
n→∞

|〈vh, φn(j)− ψ(j)〉K| = 0 ∀j, h ∈ N

and this is in turn equivalent to

w− lim
n→∞

φn(j) = ψ(j) ∀j ∈ N.

It is then easy to check that if φn → ψ in the weak-∗ topology, then
d(φn, ψ) → 0. Conversely, suppose d(φn, ψ) → 0, and let f ∈ `1(K), ε > 0.
Fix jε > 0 such that

∑
j≥jε

‖f(j)‖K < ε/4. Let nε be such that for all n ≥ nε

|〈f(j), φn(j)− ψ(j)〉K| < ε/2jε ∀j ≤ jε − 1.

For n ≥ nε

|〈f, φn − ψ〉`1 | ≤
∑

j

|〈f(j), φn(j)− ψ(j)〉K| < jε
ε

2jε
+ 2

ε

4
= ε.

The claim is thus proved.
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Suppose now (fn)n∈N is as in the statement of the lemma, and let ε > 0.
For all m ∈ N, set

Fm = {φ ∈ ball `∞(K) | |〈fn, φ〉`1 | ≤ ε/3 ∀n ≥ m} .

Fm is a closed subset in ball `∞(K), and ∪m∈NFm = ball `∞(K). Since
ball `∞(K) is metrizable and compact, hence complete, by Baire category
theorem there arem0 ∈ N, δ > 0 and φ ∈ Fm0 such that {ψ ∈ ball `∞(K) | d(ψ, φ) < δ} ⊂
Fm0 . Fix N ∈ N such that

∑
j≥N 2−j < δ/4. For all n ≥ m0, define

ψn ∈ ball `∞(K) as follows

ψn(j) =
{

φ(j) if j ≤ N − 1
fn(j)/ ‖fn(j)‖K if j ≥ N

(with 0/0 = 0). We have d(ψn, φ) < δ, and so ψn ∈ Fm0 . It follows that for
n ≥ m0 ∣∣∣∣∣∣

N−1∑
j=0

〈fn(j), φ(j)〉K +
∞∑

j=N

‖fn(j)‖K

∣∣∣∣∣∣ = |〈fn, ψn〉`1 | < ε/3.

Since limn→∞ ‖fn(j)‖K = 0 for all j by hypothesis, there exists m1 ≥ m0

such that
N−1∑
j=0

‖fn(j)‖K < ε/3 ∀n ≥ m1.

If n ≥ m1, we thus have

‖f‖`1 ≤
N−1∑
j=0

‖fn(j)‖K +

∣∣∣∣∣∣
∞∑

j=N

‖fn(j)‖K +
N−1∑
j=0

〈fn(j), φ(j)〉K

∣∣∣∣∣∣
+

∣∣∣∣∣∣
N−1∑
j=0

〈fn(j), φ(j)〉K

∣∣∣∣∣∣ < ε,

and the lemma is proved.
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