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Abstract

We outline some basic factsin the theory of unitary representations of super
Lie groups along the lines of [1]. We define the concept of representation
induced from a special sub super group. We give a version of Mackey
theory for groups containing a special normal abelian connected sub super

group.

1 Super groups and super Harish Chandra pairs

Let M denote the category of super manifolds. A super Lie group (SLG) isa
group object GG in the category M. This means that G is a supermanifold and
that there exist morphisms:

m: GxG — G
i: G — G
e: RO @

called multiplication, inverse and unit respectively obeying the usual commuta-
tive diagrams. Due to the presence of nilpotent elements in the superalgebras of
the sheaf O, morphisms between super manifolds are not determined by their
action on points and must be thought as morphisms of super agebras:

m*: OG e OGXG
i1 0 — Oqg
e": 0 — R



2 Mackey theory for super groups

satisfying the dualized commutative diagrams. The presence of commuting
nilpotent elements in the sheaf of a topological space is at the heart of “mod-
ern” agebraic geometry. Super geometry can then be seen as a “generdiza-
tion” of algebraic geometry to the case of anticommuting nilpotents. For a de-
tailed exposition of the theory of super manifolds from this perspective we refer
to [2], [8], [5], [9]. Let G be the classical Lie group underlying G1. Asin
the classical case it is possible to associate to each super Lie group G the set
g of left invariant vector fields over it. It turns out that g has the structure of
afinite dimensional super Lie algebrag = go @ g1 where g is isomorphic to
the (classical) Lie algebra of G. For the definition and the basic properties of
super Lie algebras we refer to [4] and [9]. A central role in our approach ( [1])
to the representation theory of super Lie groupsis played by the following result
(see[2])?. Gy acts naturally on g through automorphisms

a: G — Aut(g)
in such away that
do(X) = [X,] VX €go

Then we can associate to each super Lie group G thetriple (G, g, ). In what
followsfor simplicity we will omit the reference to o and we will use the abbre-
viated notation

(Go, 9) 1)
the action of g € G on g being simply denoted by X — X 9.
Definition 1 We say that (G, g) is a super Harish-Chandrapair (SHCP) if
e (Gyisaclassical Liegroup

e g = go D g1 isasuper Lie algebra such that g, isisomprphic to the Lie
algebra of G;

o the adjoint representation of gy on g exponentiates to a representation of
Go.

Remark 1 We will refer to (1) asthe SHCP defined by the super Lie group G.

Remark 2 Let (Go, g) and (Hy, h) be SHCPs. We say that 7 = (g, p™) isa
morphismiif

(a) mo : Go — Hy isaclassical Lie group homomorphism;

1l et J (U) denote theideal generated by the nilpotent elementsin ¢ (U). Thereisacanonical
isomorphism O¢ (U) /J (U) ~ C*° (U) and the maps m, 4, e pass to the quotient. In this way
we can define aclassica Lie group Go = (G, Og/J).

2A different approach to the representation theory of super Lie groups can be found in [3]
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(b) p™ : g — b isahomomorphism of super Lie algebras such that

pw|90 = d7T0
XY = p(X)

We thus see that super Harish-Chandra pairs form a category.

Examplel Let V = V@ V; beasuper vector space. The SHCP defined by the
SSGGL (V) isgivenby
Go = GL (Vb) x GL (V1)
g = End(V)
where GL(V;) isthe classical Lie group of linear isomorphisms of V;, End (V)

isthe super Lie algebra of linear transformations of 1/, and the actions are the
natural ones.

Theorem 1 The assignement that takes a super Lie group G into the corre-
sponding SHCP (G, g) is an eguivalence of categories.

By virtue of the above theorem in the following we will make no distinction
between a super Lie group and the corresponding SHCP.

A finite dimensional representation of a SLG G in a super vector space V,
i.e. asuper Lie group homomorphism = : G — GL(V), isthus equivalent to a
morphism (7o, p™) between the respective SHCPs, i.e.

1. aneven (= grading preserving) representation 7 of the classical Lie group
GoinV;

2. asuper Lie agebrahomomorphismp™ : g — End (V) satisfying
Py, = dmo

pT(X9) = mo(g)p™ (X)mo(g) ™"

Actually, condition 2 is equivalent to give alinear map p™ : g1 — End(V);
such that

dmo([X,Y]) = p"(X)p"(Y)+p"(Y)p"(X) VX, Y €g
pT(X9) = mo(g)p™(X)mo(g) .

This definition can be generalized to the infinite dimensional case. Nevertheless
therelation

pT(X)? = dmo([X,X])

makes apparent that great care is needed due to the appearance of unbounded
operators.



4 Mackey theory for super groups

Let us restrict from now on to the case of unitary representations. If GG is
aclassica Lie group and 7 is a strongly continuous unitary representation (in
brief, UR) of G, it isaclassical result that the generators dn (X), X € g, are
skew-adjoint, and the vector space C'*° () of infinitely differentiablevectorsfor
™ isacommon denseinvariant corefor thewhole set of operators {dm (X)} x -

The following definition is compl etely natural.

Definition 2 A super Hilbert space (SHS) isa super vector space’ = H o D Hi
over C with a scalar product (-, -) such that 7 is a Hilbert space under (-, ),
and H; (¢ = 0, 1) are mutually orthogonal closed linear subspaces. If we define

0 if 2 and y are of opposite parity
(z,y) = ¢ (z,y) ifzandyareeven
i(z,y) ifzandyareodd

then (x, y) isan even super Hermitian form, with

We give the following definition of unitary representation.

Definition 3 A unitary representation (UR) of a SLG (Gy,g) is a triple
(o, p™, H) with the following properties.

(8 HisaSHS and 7y isaneven URof G inH;

(b) p™ : g1 — End(C>°(mp))1 isalinear map such that
(7) p™(X) with domain C*°(m) is symmetric for all X € gy;
(1) p™(X9) = mo(g)p™(X)mo(g)~" for all X € g1, g € Go;

(i) —idmo([X, Y]) = p(X)p(¥) 1 " (V)" (X) on O (o) for al
XY € g1.

Note that we have included a factor e =7/ in p™. It may appear that the choice
of C> (m) in the above definition is somewhat arbitrary. It turns out that all
such choices are essentially equivalent in the following sense.

Proposition 1 Let be given
(a) aneven unitary representation o of G ina SHS'H;
(b) amp-invariant dense graded subspace B C H;
(c¢) alinear map p : g1 — End(B); such that
(1) p(X)isasymmetric operator for all X € gq;

(i1) p(X9) =m0(9)p(X)mo(g)~" for al X € g1,9 € Go;
(#i1) —idmo([X,Y]) = p(X)p(Y) + p(Y)p(X) onBfor all X,Y € g;.
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Then

1. For any X € g;, p(X) is essentially self adjoint and C>°(my) C
domp(X).

2. Let p™(X) p(X)|C°°(7r0) for X € g1. Then (mo, p™, H) isa UR of the

SLG (GOag)
Moreover, (7o, p™, H) is unique, in the sense that if (g, p’, H) is a UR of the

SLG (G, g), such that B € domp’(X) and p/(X) restricts to p(X) on B for
all X € gy,thenp’ = p™.

With the following natural definition of morphism between URs, Schur lemma
follows easily.

Definition 4 A morphism A : # — «/, 7 and 7’ being URs of (G, g), isan
even bounded operator A : H — H' such that

(a) Amo(g) = m((g)Afor all g € Go;

(b) Ap™(X) = p™(X)A for all X € g1, where AC™(my) C C(n()A
follows by (a).

We let Hom (7, ) be the set of morphisms 7t — .

Proposition 2 (Schur lemma) If 7, 7’ areirreducible (i.e. they do not contain
subrepresentations), then Hom (7, #") = C or 0.

2 Mackey theory for super groups

Oneof themain procedurefor determining the unitary dual of aclassical groupis
given by Mackey theory [7]. At the heart of such theory there are the concepts of
induced representation and imprimitivity system. In this section we will sketch
very briefly such notionsin the super context and, in order to simplify notations,
we will assume all groups at sight unimodular and, due to lack of space, we
will usually omit measure theoretical details. For a detailed exposition we refer
to[1].

2.1 The inducing functor and the super imprimitivity theorem

Let G = (Go,g) beaSHCPand H = (Hy, ) asub-SHCPR, i.e. H, isaclosed
subgroup of Gg and h C g. We want to define the concept of representation
of G induced by a representation o = (o, p”, K) of H. We will restrict our
treatment to the case in which H have a particular form.

Definition 5 H is called a special sub SHCP if h; = g;.
Remark 3 In particular, this condition implies

1. [g1,91) C bo.
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2. the quotient of G with respect to H isa classical manifold.

Thefirst step in defining the representation 7 of (G, g) induced by o isto define
the space’H onwhich 7 acts. Thisiscompletely classical. We briefly summarize
the main points of this construction. We denote by ¢g — ¢ the canonical projec-
tion of G onto G/ Hy, let also p be afixed invariant measureon G/ Hy. H is
defined as the set of those functions f : Gy — K such that

1. fisweakly measurable;
2. f(gh) = oo(h)~" f(9);
3. |fllx € L*(Go/Ho, ).

The unitary action o of G in H is by left trandations. 7 so defined is the
classical representation of G induced by oy.

Remark 4 H is naturally graded, f € H being even or odd according as
flg) € Ko or f(g) € K4 for u-almost all g.

In order to define the action of g, we need to determine, as explicitely as possi-
ble, C*° (m). It turns out [10] that

C*(mg) = {feHNC®(Gy;K) | Df € Hforal leftinvariant
differential operators D}

It is important to note that that the vectors in C'> (mg) take vaues in
C® (09). Thefollowing definition is then well posed.

" (X)) (9) = (X9 )f(g) VX g, feC®(m)

It turns out (see [1]) that p™ (X)) maps C> () into itself.

We call the representation (g, p™, H) defined above the representation of G
induced by o, and we denoteit by ind (o).

Itiswell knownthat attached to the classical representation 7o induced by o
there is a projection valued measure P : B(Go/Hy) — L(H) (B(Go/Hy) =
the Borel subsets of G/ Hy, L(H) = the bounded operators on ) such that

70(9)P(E)mo(9) " = P(gE) VE € B(Go/Hy).
Pisgivenby
(P(E)f)(9) = xEe(9)f(9) 2

(xr = the characteristic function of E). Thetriple (mo, P, H) is the classical
system of imprimitivity induced by o¢. It turns out that P(F) commutes with
p™(X) ondomp™(X). Thisjustifies the following definition.

Definition 6 A super system of imprimitivity (S3) for G based on G/H isa
collection (g, p™, P, H) where
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(i) m = (mo, p™, H) isaURof the LG (G, g);

(it) (mo, P,’H) isaclassical system of imprimitivity;

)
(731) P(E)isanevenoperator for all E C B(Go/Hy);
(1v) p™(X) commuteswith P(E) for all X € g; and E C B (Go/Hp).

The SS (7o, p™, P,’H) with m = ind (o) and P given by eg. 2 isthe S3 induced
by o.

Morphisms between SSIs based on G/ H, are defined in the natural way. We
thus have the following extension of Mackey’s imprimitivity theorem.

Theorem 2 (Super imprimitivity theorem) The assignment that takes o to the
SS induced by o is an equivalence of categories from the category of URs of the
special sub SLG H = (Hy, b) to the category of SSsfor G basedon G/H.

2.2 Mackey machine

Let now G be a SLG and N a specia sub SLG. Suppose N is a connected
abelian Lie group, and that Ny isnorma in Go. Denote by N, the unitary dual
of Ny. Let m = (mo, p™, H) be anirreducible UR of G. Since Nj is abelian,

there exists a unique projection valued measure P : B (ZVO) — L(H) such that
m(n) = [_ &n)dP(§) Vn € No.
No

It is not difficult to check that
mo(9)P(E)mo(g)~! = P(EY).

From now on, we will suppose that N acts trivially on g;. Due to the
relation

pr(X) = p" (X") = mo(g)p" (X)mo(9)™" VneN, X €,

we see that p™ (X)) commuteswith P(E) for dl E € B (ﬁo). Hence, if E is

Go-invariant, P(E) € Hom (7, 7). By Schur lemma, we concludethat P(E) =
Oorl.

If the orbit space JVO /Gy is countably separated we have that P is conce-
trated in an orbit O C ﬁo. In this case, fixed £ € O and denoting by G o
the stability subgroup of £ in G, the orbit O is homeomorphic to the quotient
space G/ Goe, and P transportsto aprojection valued measureon G o/ Goe . Léet
Ge = (Gog, goe D 91), which we call the stabilizer of £ in G. G is a special
sub-SHCP of G containing N. We have thus shown that (7, p™, P, H) isaSS
for G based on G/G¢. By super imprimitivity theorem, each SSI arising in this
manner from an irreducible representation 7 of G isinduced by arepresentation
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o = (09, p°,K) of Ge¢. Itisaclassical result (see [6]) that such representation
must satisfy

oo(n) =&(n)I Vn € Ny. (3)

We call £&-admissible arepresentation o of G'¢ satisfying eq. 3, and denote by G‘E
the set of irreducible £-admissible representations of G'¢. We have thus proved
the following theorem.

Theorem 3 Let N be a sub-SHCP of G'such that
(i) N isspecial;
(it) Ny isanormal abelian and connected;
(#i7) theaction of Ny on g, istrivial;
(iv) theorbit space N /Gy is countably separated.
then

(i) fixed & € Ny, for each o € G'¢ the representation ind (o) isirreducible,
andind (o) # ind (¢’) if 0 # o;

(#4) eachirreducible representation of G is of the formind (o) for some ¢ €
Noando € Gy;

(#4¢) inducing from a different £’ € No gives the same set of representations if
& and ¢’ arein the same orbit, and disjoint setsif £ and ¢’ are in different
orhits.

We notice that here an important difference arise with respect to the classical
theory since for some { € N there can be no {-admissible representation. We
call O the Go-invariant set of those ¢ € Ny for which Gy is non empty. The
above proposition establishes a bijective correspondence between the unitary
dua G of the SLG G and the fibered set Ugeo+/a,Ge, in complete analogy
with the classical theory. However, we stress again that, unlike to the classical
case, in the super case not all orbits are allowed.

Determination of Goe I this last section, given ¢ € Ny we will determine
the set G of {-admissible irreducible representations of G¢. We define the
simmetric bilinear form Q¢ : g1 x g1 — R given by

Qe (X,Y) = —id¢ ([X,Y]).
Suppose o = (09, p7, K) € Ge. Since [g1, g1] < no,
Qe (X, X) I = —iday ([X, X]) = 2p7 (X)?, 4

thus showing that ()¢ is semidefinite positive, and that p extends to a bounded
self-adjoint operator on . We denote by g1, the quotient of g, by the radical of
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Q¢. By eqg. 4, themap X — p?(X) passesto thequotient g1¢. Welet C (gi¢) be
the Clifford algebra of g;¢ (with respect to the scalar product induced by @ ¢).
Therelation

Qe (X,Y) = p” (X)p7 (V) +p° (V) p7 (X)

impliesthat p° extendsto a self-adjoint representation (SAR) of the superalge-
braC (gi¢), i.e. to agraded representation of C (g1¢) by bounded operators on
K whose restriction to g1 acts by self-adjoint operators.

We now give a brief analysis of these kind of representations. In [1] the
following facts are proved.

(a) There exists irreducible SARs of C (gi¢); these are finite-dimensional,
unique if dim g¢ is odd, and unique up to parity reversal if dimg¢ is
even.

(b) Let T beanirreducible SAR of C (g1¢) inaSHS £ and let § be any SAR
of C (gi¢) iNnaSHSR. ThenR = M ® L, where M isaSHS and

O(z)=1®7(x) Vrel(gi).
Moreover, if dim g1¢ isodd, M can be chosen purely even.

(c) If risanirreducible SAR of C (g1¢), therestriction of 7 to the spin group
Spin (gi¢) C C (gi¢) iSunitary.

For g € Gog¢, we have
Qe ([X9,Y9]) = —id¢ ([X,Y]?) = —id¢ ([X,Y]),

which shows that the action of G, (actually, of the quotient group G oz /No) on
g1 descendsto an action on g by orthogonal transformations. We now assume
that the stability subgroup G ¢ is connected (for a complete treatement, we refer
to [1]). Inthis case, Go¢ /Ny mapsinto SO(g1¢), o, for each § € Gog /Ny, we
can find a (not unique!) g € Spin (g1¢) such that

X9=gXg™! VX € g (5)
If 7 isanirreducible SAR of C (g1¢), we define
r(9) = 7(9)- (6)

We thus get a projective unitary representation « of G o¢/No, with £1-valued
multiplier i, which by eqg. 5 satisfies

R(G)T(X)R(9) ™ = 7(X7).

We now return to the problem of determining the structure of o € Gog. By
the above facts, we can write

p7(X) =1@7e(X)
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for some irreducible SAR 7¢ of C(gi¢). Following the classical pattern, we
will show that o can be written as a tensor product of “simpler” projective
representations.

It iswell known that the character £ of Ny cannot be in general extended to
aUR of Gos (Mackey obstruction; see [6]). Neverthelessit is always possible
to extend ¢ to a projective scalar representation £ of Goe. Theclass of the asso-
ciated multiplier w, depends only on ¢, and w, descends to a multiplier of the
group Gog /No. If we define the representation

5(9) = &(9) "alg)

it isastraightforward computation to check that & is aw ¢-projective representa-
tion. Moreover ~
5 (gn) = €M) "€ (9) " a(9)¢(n)
and hence & descends to a w¢-projective representation of Go¢ /Ny, which we
denoteagainby &.
Now & must satisfy

5(9) (1@ (X)) 5(9) ™" = 00(9)p” (X) 00(9) " = 7 (X).

Let k¢ be asineg. 6. Since [1 ® ke(§)] ' 6(g) commutes with 1 @ 7¢, by
irreducibility of 7. we conclude that

5(9) =7(9) @ re(9)

where @ is an even we p representation of Gog /No in M.
We have finally established the structure of a generic admissible irreducible
UR o € Gog, namely

oolg) = &(9)7(9) @ re(9)

p7(X) = lom(X

where¢, ke and 7 arefixed by the point £ € Ny, and& € GE/TVOW, the set of

wu-projective representations of Go¢ /Ny. In particular, this showsthat Q¢ > 0

is not only necessary, but is also a sufficient condition in order that Gog #0.1In

fact, Q¢ > 0 isthe only condition needed to carry over the above construction.
We have thus established the following result.

Theorem 4 We have the identification
0+={5eﬁ0|ngo}.
If ¢ € OF, fixanirreducible SAR ¢ of C (g1¢). Then, the map

— W ~ ~
Gog/No 50— (§E®/<;§,1 ®T§) S GOE

isahijection.
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