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Abstract

We outline some basic facts in the theory of unitary representations of super
Lie groups along the lines of [1]. We define the concept of representation
induced from a special sub super group. We give a version of Mackey
theory for groups containing a special normal abelian connected sub super
group.

1 Super groups and super Harish Chandra pairs

Let M denote the category of super manifolds. A super Lie group (SLG) is a
group object G in the category M. This means that G is a supermanifold and
that there exist morphisms:

m : G × G −→ G

i : G −→ G

e : R0|0 −→ G

called multiplication, inverse and unit respectively obeying the usual commuta-
tive diagrams. Due to the presence of nilpotent elements in the superalgebras of
the sheaf OG, morphisms between super manifolds are not determined by their
action on points and must be thought as morphisms of super algebras:

m∗ : OG −→ OG×G

i∗ : OG −→ OG

e∗ : OG −→ R
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satisfying the dualized commutative diagrams. The presence of commuting
nilpotent elements in the sheaf of a topological space is at the heart of “mod-
ern” algebraic geometry. Super geometry can then be seen as a “generaliza-
tion” of algebraic geometry to the case of anticommuting nilpotents. For a de-
tailed exposition of the theory of super manifolds from this perspective we refer
to [2], [8], [5], [9]. Let G0 be the classical Lie group underlying G1. As in
the classical case it is possible to associate to each super Lie group G the set
g of left invariant vector fields over it. It turns out that g has the structure of
a finite dimensional super Lie algebra g = g0 ⊕ g1 where g0 is isomorphic to
the (classical) Lie algebra of G0. For the definition and the basic properties of
super Lie algebras we refer to [4] and [9]. A central role in our approach ( [1])
to the representation theory of super Lie groups is played by the following result
(see [2])2. G0 acts naturally on g through automorphisms

α : G0 −→ Aut (g)

in such a way that

dα (X) = [X, ·] ∀X ∈ g0

Then we can associate to each super Lie group G the triple (G0, g, α). In what
follows for simplicity we will omit the reference to α and we will use the abbre-
viated notation

(G0, g) (1)

the action of g ∈ G0 on g being simply denoted by X �→ X g.

Definition 1 We say that (G0, g) is a super Harish-Chandra pair (SHCP) if

• G0 is a classical Lie group

• g = g0 ⊕ g1 is a super Lie algebra such that g0 is isomprphic to the Lie
algebra of G0;

• the adjoint representation of g0 on g exponentiates to a representation of
G0.

Remark 1 We will refer to (1) as the SHCP defined by the super Lie group G.

Remark 2 Let (G0, g) and (H0, h) be SHCPs. We say that π = (π0, ρ
π) is a

morphism if

(a) π0 : G0 → H0 is a classical Lie group homomorphism;

1Let J (U) denote the ideal generated by the nilpotent elements in OG (U). There is a canonical
isomorphism OG (U) /J (U) � C∞ (U) and the maps m, i, e pass to the quotient. In this way
we can define a classical Lie group G0 = (G,OG/J).

2A different approach to the representation theory of super Lie groups can be found in [3]
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(b) ρπ : g → h is a homomorphism of super Lie algebras such that

ρπ|g0
= dπ0

ρπ (Xg) = ρπ (X)g

We thus see that super Harish-Chandra pairs form a category.

Example 1 Let V = V0⊕V1 be a super vector space. The SHCP defined by the
SLG GL (V ) is given by

G0 = GL (V0) × GL (V1)
g = End(V )

where GL(Vi) is the classical Lie group of linear isomorphisms of Vi, End(V )
is the super Lie algebra of linear transformations of V , and the actions are the
natural ones.

Theorem 1 The assignement that takes a super Lie group G into the corre-
sponding SHCP (G, g) is an equivalence of categories.

By virtue of the above theorem in the following we will make no distinction
between a super Lie group and the corresponding SHCP.

A finite dimensional representation of a SLG G in a super vector space V ,
i.e. a super Lie group homomorphism π : G → GL(V ), is thus equivalent to a
morphism (π0, ρ

π) between the respective SHCPs, i.e.

1. an even (= grading preserving) representation π 0 of the classical Lie group
G0 in V ;

2. a super Lie algebra homomorphism ρπ : g → End(V ) satisfying

ρπ|g0
= dπ0

ρπ(Xg) = π0(g)ρπ(X)π0(g)−1.

Actually, condition 2 is equivalent to give a linear map ρπ : g1 → End(V )1
such that

dπ0([X, Y ]) = ρπ(X)ρπ(Y ) + ρπ(Y )ρπ(X) ∀X, Y ∈ g

ρπ(Xg) = π0(g)ρπ(X)π0(g)−1.

This definition can be generalized to the infinite dimensional case. Nevertheless
the relation

ρπ (X)2 = dπ0 ([X, X ])

makes apparent that great care is needed due to the appearance of unbounded
operators.
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Let us restrict from now on to the case of unitary representations. If G is
a classical Lie group and π is a strongly continuous unitary representation (in
brief, UR) of G, it is a classical result that the generators dπ (X), X ∈ g, are
skew-adjoint, and the vector space C∞ (π) of infinitely differentiable vectors for
π is a common dense invariant core for the whole set of operators {dπ (X)}X∈g.

The following definition is completely natural.

Definition 2 A super Hilbert space (SHS) is a super vector space H = H0⊕H1

over C with a scalar product (·, ·) such that H is a Hilbert space under (·, ·),
and Hi (i = 0, 1) are mutually orthogonal closed linear subspaces. If we define

〈x, y〉 =




0 if x and y are of opposite parity

(x, y) if x and y are even

i(x, y) if x and y are odd

then 〈x, y〉 is an even super Hermitian form, with

〈y, x〉 = (−1)p(x)p(y)〈x, y〉.
We give the following definition of unitary representation.

Definition 3 A unitary representation (UR) of a SLG (G0, g) is a triple
(π0, ρ

π,H) with the following properties.

(a) H is a SHS, and π0 is an even UR of G0 in H;

(b) ρπ : g1 → End(C∞(π0))1 is a linear map such that

(i) ρπ(X) with domain C∞(π0) is symmetric for all X ∈ g1;

(ii) ρπ(Xg) = π0(g)ρπ(X)π0(g)−1 for all X ∈ g1, g ∈ G0;

(iii) −idπ0([X, Y ]) = ρπ(X)ρπ(Y ) + ρπ(Y )ρπ(X) on C∞(π0) for all
X, Y ∈ g1.

Note that we have included a factor e−iπ/4 in ρπ. It may appear that the choice
of C∞ (π0) in the above definition is somewhat arbitrary. It turns out that all
such choices are essentially equivalent in the following sense.

Proposition 1 Let be given

(a) an even unitary representation π0 of G0 in a SHS H;

(b) a π0-invariant dense graded subspace B ⊂ H;

(c) a linear map ρ : g1 → End(B)1 such that

(i) ρ(X) is a symmetric operator for all X ∈ g1;

(ii) ρ(Xg) = π0(g)ρ(X)π0(g)−1 for all X ∈ g1, g ∈ G0;

(iii) −idπ0([X, Y ]) = ρ(X)ρ(Y ) + ρ(Y )ρ(X) on B for all X, Y ∈ g1.
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Then

1. For any X ∈ g1, ρ(X) is essentially self adjoint and C∞(π0) ⊂
domρ(X).

2. Let ρπ(X) = ρ(X)
∣∣
C∞(π0)

for X ∈ g1. Then (π0, ρ
π,H) is a UR of the

SLG (G0, g).

Moreover, (π0, ρ
π,H) is unique, in the sense that if (π0, ρ

′,H) is a UR of the
SLG (G0, g), such that B ⊂ domρ′(X) and ρ′(X) restricts to ρ(X) on B for
all X ∈ g1, then ρ′ = ρπ.

With the following natural definition of morphism between URs, Schur lemma
follows easily.

Definition 4 A morphism A : π → π ′, π and π′ being URs of (G0, g), is an
even bounded operator A : H → H ′ such that

(a) Aπ0(g) = π′
0(g)A for all g ∈ G0;

(b) Aρπ(X) = ρπ′(X)A for all X ∈ g1, where AC∞(π0) ⊂ C∞(π′
0)A

follows by (a).

We let Hom (π, π′) be the set of morphisms π → π′.

Proposition 2 (Schur lemma) If π, π ′ are irreducible (i.e. they do not contain
subrepresentations), then Hom(π, π ′) = C or 0.

2 Mackey theory for super groups

One of the main procedure for determining the unitary dual of a classical group is
given by Mackey theory [7]. At the heart of such theory there are the concepts of
induced representation and imprimitivity system. In this section we will sketch
very briefly such notions in the super context and, in order to simplify notations,
we will assume all groups at sight unimodular and, due to lack of space, we
will usually omit measure theoretical details. For a detailed exposition we refer
to [1].

2.1 The inducing functor and the super imprimitivity theorem

Let G = (G0, g) be a SHCP and H = (H0, h) a sub-SHCP, i.e. H0 is a closed
subgroup of G0 and h ⊂ g. We want to define the concept of representation
of G induced by a representation σ = (σ0, ρ

σ,K) of H . We will restrict our
treatment to the case in which H have a particular form.

Definition 5 H is called a special sub SHCP if h1 = g1.

Remark 3 In particular, this condition implies

1. [g1, g1] ⊂ h0.
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2. the quotient of G with respect to H is a classical manifold.

The first step in defining the representation π of (G0, g) induced by σ is to define
the space H on which π acts. This is completely classical. We briefly summarize
the main points of this construction. We denote by g �→ ġ the canonical projec-
tion of G0 onto G0/H0, let also µ be a fixed invariant measure on G0/H0. H is
defined as the set of those functions f : G0 → K such that

1. f is weakly measurable;

2. f(gh) = σ0(h)−1f(g);

3. ‖f‖K ∈ L2 (G0/H0, µ).

The unitary action π0 of G0 in H is by left translations. π0 so defined is the
classical representation of G0 induced by σ0.

Remark 4 H is naturally graded, f ∈ H being even or odd according as
f(g) ∈ K0 or f(g) ∈ K1 for µ-almost all ġ.

In order to define the action of g1 we need to determine, as explicitely as possi-
ble, C∞ (π0). It turns out [10] that

C∞ (π0) = {f ∈ H ∩ C∞ (G0;K) | Df ∈ H for all left invariant

differential operators D}
It is important to note that that the vectors in C∞ (π0) take values in

C∞ (σ0). The following definition is then well posed.

(ρπ (X) f) (g) = ρσ
(
Xg−1)

f (g) ∀X ∈ g1, f ∈ C∞ (π0)

It turns out (see [1]) that ρπ (X) maps C∞ (π0) into itself.
We call the representation (π0, ρ

π,H) defined above the representation of G
induced by σ, and we denote it by ind (σ).

It is well known that attached to the classical representation π0 induced by σ0

there is a projection valued measure P : B (G0/H0) → L(H) (B (G0/H0) =
the Borel subsets of G0/H0, L(H) = the bounded operators on H) such that

π0(g)P (E)π0(g)−1 = P (gE) ∀E ∈ B (G0/H0) .

P is given by

(P (E)f) (g) = χE(g)f(g) (2)

(χE = the characteristic function of E). The triple (π0, P,H) is the classical
system of imprimitivity induced by σ0. It turns out that P (E) commutes with
ρπ(X) on domρπ(X). This justifies the following definition.

Definition 6 A super system of imprimitivity (SSI) for G based on G/H is a
collection (π0, ρ

π, P,H) where
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(i) π = (π0, ρ
π,H) is a UR of the SLG (G0, g);

(ii) (π0, P,H) is a classical system of imprimitivity;

(iii) P (E) is an even operator for all E ⊂ B (G0/H0);

(iv) ρπ(X) commutes with P (E) for all X ∈ g1 and E ⊂ B (G0/H0).

The SSI (π0, ρ
π, P,H) with π = ind (σ) and P given by eq. 2 is the SSI induced

by σ.

Morphisms between SSIs based on G0/H0 are defined in the natural way. We
thus have the following extension of Mackey’s imprimitivity theorem.

Theorem 2 (Super imprimitivity theorem) The assignment that takes σ to the
SSI induced by σ is an equivalence of categories from the category of URs of the
special sub SLG H = (H0, h) to the category of SSIs for G based on G/H .

2.2 Mackey machine

Let now G be a SLG and N a special sub SLG. Suppose N0 is a connected
abelian Lie group, and that N0 is normal in G0. Denote by N̂0 the unitary dual
of N0. Let π = (π0, ρ

π,H) be an irreducible UR of G. Since N0 is abelian,

there exists a unique projection valued measure P : B
(
N̂0

)
→ L(H) such that

π(n) =
∫

N̂0

ξ(n)dP (ξ) ∀n ∈ N0.

It is not difficult to check that

π0(g)P (E)π0(g)−1 = P (Eg) .

From now on, we will suppose that N0 acts trivially on g1. Due to the
relation

ρπ (X) = ρπ (Xn) = π0(g)ρπ(X)π0(g)−1 ∀n ∈ N, X ∈ g1,

we see that ρπ(X) commutes with P (E) for all E ∈ B
(
N̂0

)
. Hence, if E is

G0-invariant, P (E) ∈ Hom (π, π). By Schur lemma, we conclude that P (E) =
0 or I .

If the orbit space N̂0/G0 is countably separated we have that P is conce-
trated in an orbit O ⊂ N̂0. In this case, fixed ξ ∈ O and denoting by G0ξ

the stability subgroup of ξ in G0, the orbit O is homeomorphic to the quotient
space G0/G0ξ, and P transports to a projection valued measure on G0/G0ξ. Let
Gξ = (G0ξ, g0ξ ⊕ g1), which we call the stabilizer of ξ in G. Gξ is a special
sub-SHCP of G containing N . We have thus shown that (π0, ρ

π, P,H) is a SSI
for G based on G/Gξ. By super imprimitivity theorem, each SSI arising in this
manner from an irreducible representation π of G is induced by a representation
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σ = (σ0, ρ
σ,K) of Gξ . It is a classical result (see [6]) that such representation

must satisfy

σ0(n) = ξ(n)I ∀n ∈ N0. (3)

We call ξ-admissible a representation σ of Gξ satisfying eq. 3, and denote by Ǧξ

the set of irreducible ξ-admissible representations of Gξ . We have thus proved
the following theorem.

Theorem 3 Let N be a sub-SHCP of Gsuch that

(i) N is special;

(ii) N0 is a normal abelian and connected;

(iii) the action of N0 on g1 is trivial;

(iv) the orbit space N ∗
0 /G0 is countably separated.

then

(i) fixed ξ ∈ N̂0, for each σ ∈ Ǧξ the representation ind (σ) is irreducible,
and ind (σ) �= ind (σ′) if σ �= σ′;

(ii) each irreducible representation of G is of the form ind (σ) for some ξ ∈
N̂0 and σ ∈ Ǧξ;

(iii) inducing from a different ξ ′ ∈ N̂0 gives the same set of representations if
ξ and ξ′ are in the same orbit, and disjoint sets if ξ and ξ ′ are in different
orbits.

We notice that here an important difference arise with respect to the classical
theory since for some ξ ∈ N̂0 there can be no ξ-admissible representation. We
call O+ the G0-invariant set of those ξ ∈ N̂0 for which Ǧ0ξ is non empty. The
above proposition establishes a bijective correspondence between the unitary
dual Ĝ of the SLG G and the fibered set ∪ξ∈O+/G0Ǧξ, in complete analogy
with the classical theory. However, we stress again that, unlike to the classical
case, in the super case not all orbits are allowed.

Determination of Ǧ0ξ In this last section, given ξ ∈ N̂0 we will determine
the set Ǧξ of ξ-admissible irreducible representations of Gξ . We define the
simmetric bilinear form Qξ : g1 × g1 → R given by

Qξ (X, Y ) = −idξ ([X, Y ]) .

Suppose σ = (σ0, ρ
σ,K) ∈ Ǧξ. Since [g1, g1] ⊆ n0,

Qξ (X, X) I = −idσ0 ([X, X ]) = 2ρσ (X)2 , (4)

thus showing that Qξ is semidefinite positive, and that ρσ extends to a bounded
self-adjoint operator on K. We denote by g1ξ the quotient of g1 by the radical of



Claudio Carmeli, Gianni Cassinelli, Alessandro Toigo. 9

Qξ. By eq. 4, the map X �→ ρσ(X) passes to the quotient g1ξ . We let C (g1ξ) be
the Clifford algebra of g1ξ (with respect to the scalar product induced by Qξ).
The relation

Qξ (X, Y ) = ρσ (X)ρσ (Y ) + ρσ (Y ) ρσ (X)

implies that ρσ extends to a self-adjoint representation (SAR) of the superalge-
bra C (g1ξ), i.e. to a graded representation of C (g1ξ) by bounded operators on
K whose restriction to g1ξ acts by self-adjoint operators.

We now give a brief analysis of these kind of representations. In [1] the
following facts are proved.

(a) There exists irreducible SARs of C (g1ξ); these are finite-dimensional,
unique if dim g1ξ is odd, and unique up to parity reversal if dim g1ξ is
even.

(b) Let τ be an irreducible SAR of C (g1ξ) in a SHS L and let θ be any SAR
of C (g1ξ) in a SHS R. Then R = M⊗L, where M is a SHS and

θ(x) = 1 ⊗ τ(x) ∀x ∈ C (g1ξ) .

Moreover, if dim g1ξ is odd, M can be chosen purely even.

(c) If τ is an irreducible SAR of C (g1ξ), the restriction of τ to the spin group
Spin (g1ξ) ⊂ C (g1ξ) is unitary.

For g ∈ G0ξ , we have

Qξ ([Xg, Y g]) = −idξ ([X, Y ]g) = −idξ ([X, Y ]) ,

which shows that the action of G0ξ (actually, of the quotient group G0ξ/N0) on
g1 descends to an action on g1ξ by orthogonal transformations. We now assume
that the stability subgroup G0ξ is connected (for a complete treatement, we refer
to [1]). In this case, G0ξ/N0 maps into SO(g1ξ), so, for each ġ ∈ G0ξ/N0, we
can find a (not unique!) g̃ ∈ Spin (g1ξ) such that

Ẋg = g̃Ẋg̃−1 ∀Ẋ ∈ g1ξ. (5)

If τ is an irreducible SAR of C (g1ξ), we define

κ(ġ) := τ(g̃). (6)

We thus get a projective unitary representation κ of G0ξ/N0, with ±1-valued
multiplier µ, which by eq. 5 satisfies

κ(ġ)τ(Ẋ)κ(ġ)−1 = τ(Ẋg).

We now return to the problem of determining the structure of σ ∈ Ǧ0ξ. By
the above facts, we can write

ρσ(X) = 1 ⊗ τξ(Ẋ)
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for some irreducible SAR τξ of C (g1ξ). Following the classical pattern, we
will show that σ0 can be written as a tensor product of “simpler” projective
representations.

It is well known that the character ξ of N0 cannot be in general extended to
a UR of G0ξ (Mackey obstruction; see [6]). Nevertheless it is always possible
to extend ξ to a projective scalar representation ξ̃ of G0ξ . The class of the asso-
ciated multiplier ωξ depends only on ξ, and ωξ descends to a multiplier of the
group G0ξ/N0. If we define the representation

σ̃(g) = ξ̃(g)−1σ(g)

it is a straightforward computation to check that σ̃ is a ω ξ-projective representa-
tion. Moreover

σ̃ (gn) = ξ(n)−1ξ̃ (g)−1
σ(g)ξ(n)

and hence σ̃ descends to a ωξ-projective representation of G0ξ/N0, which we
denote again by σ̃.

Now σ̃ must satisfy

σ̃(ġ)
(
1 ⊗ τξ(Ẋ)

)
σ̃(ġ)−1 = σ0(g)ρσ (X)σ0(g)−1 = ρσ (Xg) .

Let κξ be as in eq. 6. Since [1 ⊗ κξ(ġ)]−1 σ̃(ġ) commutes with 1 ⊗ τξ , by
irreducibility of τξ we conclude that

σ̃(ġ) = σ(ġ) ⊗ κξ(ġ)

where σ is an even ωξµ representation of G0ξ/N0 in M.
We have finally established the structure of a generic admissible irreducible

UR σ ∈ Ǧ0ξ , namely

σ0(g) = ξ̃(g)σ(ġ) ⊗ κξ(ġ)

ρσ(X) = 1 ⊗ τξ(Ẋ)

where ξ̃, κξ and τξ are fixed by the point ξ ∈ N̂0, and σ ∈ Ĝ0ξ/N0

ωµ
, the set of

ωµ-projective representations of G0ξ/N0. In particular, this shows that Qξ ≥ 0
is not only necessary, but is also a sufficient condition in order that Ǧ0ξ �= ∅. In
fact, Qξ ≥ 0 is the only condition needed to carry over the above construction.

We have thus established the following result.

Theorem 4 We have the identification

O+ =
{
ξ ∈ N̂0 | Qξ ≥ 0

}
.

If ξ ∈ O+, fix an irreducible SAR τξ of C (g1ξ). Then, the map

Ĝ0ξ/N0

ωµ � σ �−→ (
ξ̃σ ⊗ κξ, 1 ⊗ τξ

) ∈ Ǧ0ξ

is a bijection.
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