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TEACHING MATHEMATICS

WITH AUTOMATIC SYMBOLIC COMPUTATION

GIANNI ARIOLI

Abstract. We discuss how the concept of problem solving is central in

current research in mathematics education, and how the difficulties of

making computations by hand and the time spent in teaching computa-

tional skills can move the focus away from the main issues. We describe

an experiment performed with students in Mathematical Engineering

which shows how the use of automatic symbolic computation can dra-

matically improve the teaching of both abstract mathematics and the

problem solving skills.

1. Introduction

“Maths is one of the world’s great systems of problem solving, which has

empowered so much of human endeavor, particularly recently. Calculating

is one piece of maths. It’s part of the maths problem-solving process.”[13].

This is a quotation from an interview to Conrad Wolfram, strategic director

of Wolfram Research and founder of computerbasedmath.org, a project to

build a completely new math curriculum for primary and secondary schools

with computer-based computation at its heart. The topic mentioned by Wol-

fram is central in the current discussion in mathematics education. Problem

solving refers to the generic activity of finding the solution of any kind of

problem, not necessarily of mathematical type.

In this paper we discuss the huge possibilities offered by symbolic computa-

tion software to mathematics education, with a particular focus to advanced

courses at University level. After an introduction on the history of math-

ematics education in Section 2, we discuss the issue of problem solving in

Section 3. In Section 4 we introduce the use of symbolic computation in the

framework of problem solving, and in Section 5 we present a teaching ex-

periment performed at the Politecnico di Milano. A summary of our results

and the students’ feedback is illustrated in Section 6.
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2. Some history

Mathematics education (also called didactics of mathematics) has now reached

the status of an autonomous and recognized science; it presents the features

of a discipline in its own right, as Romberg mentions in [24]. Great merit in

the foundation of this discipline and its emergence as an independent theory

goes to the French School, on which we will not dwell here. We would, how-

ever, at least set the above mentioned topic in the frame of current research

in Mathematics Education.

To this purpose, we refer to the analysis of D’Amore[9]. He calls Didactics

A the initial phase (1960-1980), Didactics B the intermediate stage (1980-

2000) and Didactics C the current research. More precisely, D’Amore calls

Didactics A (represented e.g. by Dienes[10] and Papy) the understanding

of the teaching of mathematics as docendi ars, that is the disclosure of the

mathematical content, in which the focus is on the teaching phase: the good

teacher achieves its goal of an effective acquisition of the topic by students

by transmitting the subject through interesting lessons, engaging activities,

appealing didactic situations...1.

A good teacher of type A has strong communication skills and ability to

arouse interest, and can thus transfer the knowledge to the students. How-

ever, studies carried out since the 80s on cognitive transfer have shown that

this teaching artist does not always get the expected result of an effective

learning. Armella Moreno[19] writes “Teaching, as a simple process of ed-

ucation, under assumptions on the capacity of the student to absorb what

you tell clearly, is not a theory, it is an illusion”.

The failing results of Didactics A, focused only on Knowledge and the trans-

mission of its contents, have expanded the scope of the research studies and

made Didactics B blossom. D’Amore defines Didactics B as the epistemol-

ogy of mathematics learning, namely as empirical research: it investigates

the methods of construction of mathematical knowledge of the student. And,

referring to Vergnaud [28] and Kilpatrick [17], D’Amore finds the basics of

this epistemology in constructivism. The cognitive process is not passive

acquisition, but active construction by the learner, who, in continuous in-

teraction and adaptation to the environment, processes independently the

information and the experiences. Hence the centrality of the learner in re-

search on Didactics B. This kind of research submits to critical analysis both

the way the student learns and the interactions and dynamics that take place

1In a nutshell, the main idea of Didactics A is: the better the teacher is in attracting
the attention of the student and in making the concepts clear, the better the student will
understand and learn.
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in the classroom. Then, mathematics education becomes “a science that is

concerned with the production and communication of mathematical knowl-

edge and with whatever is peculiar of this production and communication”2.

This science performs a systemic analysis of the components of the didactic

triangle (teacher, student, Knowledge): it finds the ways and the conditions

of the spread of mathematical knowledge; it spells out the consequences of

such spread on both the student and the knowledge itself; it studies the in-

stitutions where the transmission of knowledge occurs. And it is designed

to optimize scholastic achievements in mathematics: it considers how the

student builds his knowledge in order to organize the best possible school

situations.

The current trend of mathematics education is the epistemology of the

teacher, i.e. his formation, his function and his beliefs. Didactics A analyzes

the Knowledge and the modes of transmission of its contents, Didactics B

has broadened the scope of the research to all the variables that determine

the success or failure of the learning process. Together they opened the

way “to create good learning situations”[5], i.e. “to translate the teaching

effort into a true and conscious learning”[9]. Thus, didactics A and B led to

the beginning of a new phase of research in mathematics education, which

D’Amore calls Didactics C.

In fact, it remains to analyze the third element of the didactic triangle.

Until a few years ago, nobody ever wondered whether and to what extent

the teacher affects the learning process. For example, do his beliefs have

an effect on the contents to be transmitted and on the way in which the

pupil makes them its own? Consider then the effects of what Brousseau

called didactic contract3: “In a teaching situation, prepared and carried out

by a teacher, the student has usually the task of solving a (mathematical)

problem provided by the teacher, but the access to this task is done through

an interpretation of the questions asked, of the information provided and

of the obligations imposed by the way the teacher teaches. The didactic

contract consists both in the peculiar habits of the teacher that the pupil

expects, and in the behaviour of the pupil expected by the teacher”.

Also, research has revealed, through the concept of didactic transposition,

the complex transition from the mathematical knowledge to the knowledge

to be taught and then to the knowledge taught. The teacher adapts the

2Brousseau [6], and with him the French School, is the first to highlight the limits of
Teaching A, paving the way for a new conception of mathematics education.
3this concept is introduced by Brousseau in [2, 3, 4] and then further developed by Chevel-
lard, see [8]
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mathematical knowledge (Savoir Savant4) to transform it into what Chevel-

lard calls “knowledge to be taught”[8], which is what the pupils actually

learn.5

And then again, one can cite as additional factors that influence the teaching-

learning phenomenon: the choice of teaching situations6; the progressive

adoption of the mathematical concepts by the individual through the pas-

sage from the images of these concepts to the models and the consequent

formation of misconceptions7; various types of barriers to the learning of

mathematics (ontogenetic, didactic and epistemological)8; the difficulties re-

lated to the use of a specific language, as in mathematics, and its various

registers (mathematics as a language in itself, therefore equipped with its

own syntax, semantics and pragmatics; the necessity of the teacher to ex-

plain mathematical concepts in a language understandable to the students

and therefore the use of some kind of jargon; the easy confusion between com-

mon language and mathematical language; problems arising in the attempt

to translate the definition of a mathematical object into a representation of

the same object in some other semiotic system)[9, cap. 5, p. 77-93].

As explained above, we have made these brief and sketchy outline of research

in mathematics education to delve more easily and more consciously in the

theme of problem solving, considered by many scholars the priority in this

discipline.

3. Problem solving

Surely, Wolfram is not the first to define mathematics as “one of the world’s

great systems of problem solving”. Many great mathematicians have de-

clared it to be, among other things, the art of solving problems. In 1980,

Halmos writes: “What is really math? Axioms (like the parallel postulate)?

Theorems (as the fundamental theorem of Algebra)? Proofs (as Gödel’s)?

4this is how Chevelard calls the academic mathematical knowledge
5Particularly explanatory of this concept are the words of D’Amore: “the didactic transpo-
sition consists, from the point of view of the teacher, in building his own lessons drawing
from the source of knowledge, taking into account the orientations provided by institutions
and programs (knowledge to teach), to adapt them to his own classroom: the level of the
students, the pursued goals. The didactic transposition consists in extracting an element
of knowledge from its context (academic, social, ....) in order to adapt it to the peculiar,
unique context of the class.”[9, p. 40]
6Concerning the situation theories, we refer to [5]
7We will not enter the delicate problem of misconceptions, we refer to [9, p. 53-72] and
[31, p. 87-90]
8The obstacle theory, introduced in [1] and developed in [20], is currently considered of
fundamental importance in mathematics education. The obstacles can be related to the
student, to the choices of the teacher or may be intrisic of the topic.

4



Definitions (as Menger’s definition of dimension)? Theories (as category the-

ory)? Formulas (as Cauchy’s integral formula)? Methods (as the method of

successive approximations)? Surely, mathematics could not exist without

these ingredients, they are all essential. Still, a plausible viewpoint is that:

none of them is at the core of the discipline, the main reason of existence for

the mathematician is solve problems, mathematics is really about problems

and solutions”[14]. And before him David Hilbert: “As long as a branch

of science offers an abundance of problems, it is alive. A lack of problems

foreshadows the extinction or the arrest of independent development. Just

as every human undertaking pursues certain goals, so also mathematical re-

search requires its problems. It is through the solution of the problems that

the researcher tests himself; he finds new methods and new perspectives, and

wins a wider and freer horizon.”[15]. George Polya [21] extends the central-

ity of the problems in mathematics also to the teaching practice: “Solving

problems means finding a way out of a difficulty, a way to get around an

obstacle, to achieve a goal that is not readily accessible. Solving problems

is a specific feature of intelligence, and the intelligence is the specific gift

of mankind: you can consider the problem-solving activities as the most

peculiar feature of the human race..... Then, a math teacher has a great

opportunity. Obviously, if he will use his lesson hours to have his students

perform calculations, he will end up crushing their interest, slowing down

their mental development and wasting the opportunities that present them-

selves. Instead, if he arouses the curiosity of the students proposing problems

of difficulty proportionate to their knowledge and he helps them to solve the

problems by asking appropriate questions, he will be able to inspire in them

a taste for original reasoning”.

Following Polya, many researcher in mathematics education have reiterated

and elaborated the importance of proposing challenging problems and sit-

uations taken from real life to the students. Unfortunately, however, the

teaching in our schools mostly compresses the students in the mere execu-

tion of repetitive task. Usually teachers, when facing a new topic in the

mathematics program, show on the blackboard the procedure and then re-

quire the students to solve similar problems in the same way. It is then

necessary here to introduce the distinction between problem and exercise.

The student carries out an exercise when he merely applies rules previously

outlined and exhaustively covered by the teacher. Therefore, the solution is

just the repetition of procedures already seen9.

9For a discussion of this trend in Italy we refer to [30, 31]
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To define a problem we use some quotations. Duncker, a member of Gestalt

psychology10, writes “a problem arises when a living being has a goal and

is unable to reach it” [11]. Lester, an educator, writes: “A problem is a

task for which: the individual or group that confronts it wants or needs to

find a solution; there is no procedure immediately accessible that guarantees

or determines a complete solution; the individual or group must make an

effort to find a solution”[18]. Finally, we mention D’Amore, who prefers the

term problematic situation, which “can create a problem or exercise according

to the teaching situation” and which he defines as: “learning situation that

involves the resolution of a problem, but designed in such a way that students

cannot resolve the matter by simple repetition or application of knowledge

or skills acquired”[9, p. 95-96].

Hence a profound difference between a teaching activity focused on the so-

lution of exercises and one based instead on the solution of problems. In

the first one, students just have to solve exercises assigned by the teacher

to check their level of learning as a result of his explanations. In the other

one, the teacher chooses to submit to the students problematic situations

which require them to engage in a productive process. Each person, in such

process of problem solving, is influenced by cognitive11, metacognitive12 and

emotional factors13. The topic that mostly interests us now, however, is the

repertoire of strategies that come into play when solving a problem, what

Polya has precisely defined as heuristic: “The purpose of heuristic is to study

methods and rules of invention and discovery”[21]. In the activity of prob-

lem solving, the issue of methods of finding a solution is fundamental. The

reproductive thought, typical of this activity, comes to life and grows right in

10This discipline has given many contributions to the theory of problem solving, although it
mainly refers to the definition of productive thinking, as opposed to reproductive thinking.
Gestalt psychologists, in fact, aim “to establish the phenomenology of these processes and
the characteristics that set them apart from those purely reproductive, to identify the
conditions that favor them and those that hinder them, to locate the decisive moments of
the process, when it creates a flash of understanding”[16, p. 36].
11As an example, depending on the knowledge regarding the topic where the problem under
study belongs, the learner can judge the activity as a real problem or as a simple exercise.
And, to address it, he uses strategies that he knows (heuristics) and he takes continuously
decisions about how to manage the resources available[27]. Everything happens always
within his belief systems[25], that is the personal beliefs about oneself, on the problem
under consideration, on the goals set in carrying out this activity, on mathematics in
general.
12The studies of Flavell[12], Brown-Walter[7] and Schoenfeld[26] identified two main char-
acteristics of metacognition. On one hand, the awareness considered as knowledge that
the subject has both of himself as a learner and of the resources at his disposal. On the
other hand, control understood as pondered and prudent management of his cognitive
capabilities.
13“The same thought has its origin not from another thought, but from the sphere of the
motivations of our consciousness, which contains our passions and our needs, our interests
and impulses, our affections and our emotions”[29]
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the solution process. Dunker, back in 1935, made an enlighting distinction

between solving algorithm, which leads to the solution of a problem, and a

heuristic method, which instead is a way to build a solving algorithm[11].

The first is a formula - broadly understood as an instruction, a recipe - that

leads to the solution of the problem. The second is a non-specialist strategy

that helps to address the problem with the aim of getting to a solution.

Dunker analyzes some heuristic methods in his view particularly effective:

the analysis of the goal (what does the problem really require? what should

I achieve?), the analysis of the situation or of the data (what are the data

available to me? what can I use?) and the analysis of the conflict (what are

the obstacles between me and the solution? how do I manipulate the data or

items that I have in order to reach it?). If we want to immerse ourselves in

the specific field of mathematics, a teacher can e.g. explain a proof, leading

the students to use the analysis of the goal heuristic. He makes the statement

explicit and encourages the students to ponder about questions such as: what

are we required to achieve? what do we have to prove exactly? which steps

lead to the formulation of the statement? what elements, data, theories do

we need? The students are asked to reconstruct the proof starting from the

goal, that is the statement. If, instead, the teacher wants them to address

the opposite task - starting from the premises, and then developing the proof

step by step until they reach the statement - then he directs the class to start

from the data, that is to use the heuristic method of analysis of the situation.

In both cases, it is clear that the mental processes that unfold towards the

solution are ignited and nurtured by the questions that the solver arises.

As we have already mentioned, the first researcher to make a systematic

study of these issues, specifically addressed to mathematics education, was

Polya [22, 23, 21]. We do not enter into the details of his treatises, nor we

discuss the many researchers who, because of the huge impetus provided by

Polya on research about problem solving, have studied the most effective

heuristic strategies concerning the solution of mathematical problems. We

only recall, and then pursue, a fundamental question now widespread in this

field of research that we have experienced in 20 years of university teaching.

If the math teacher spends his lesson hours to make his students perform

calculations, he will eventually dampen their interest and stop their mental

development. He will play in full his role as an educator, stimulating and

improving their reasoning skills if, instead, “he awakens the curiosity of pupils

proposing problems of difficulty in proportion to their knowledge and help

them find the solution them with appropriate questions”.
7



4. Symbolic computations as a teaching tool

The solution of a problem is usually addressed with mathematics through

the following steps:

(1) Creation of a mathematical model, that is translation of the real

world into equations, starting from general laws and constitutive re-

lations:

(a) By general laws we mean e.g. the laws of Mechanics, that is laws

that describe fundamental relationships, as the conservation of

energy and momentum.

(b) The constitutive relations depend on the particular problem ad-

dressed, e.g. Fourier’s law for the heat flow.

(2) Study of the generic features of the mathematical model, e.g. to

establish if it represents a well posed problem.

(3) Search for a technique to solve the equations. This usually consists

in the creation of some algorithms that convert the input data into

output data.

(4) Applications of the algorithms developed at step 3. This step usually

consists in computations, which can be of two different types:

(a) Symbolic computations.

(b) Numerical computations.

(5) Interpretation of the mathematical results as answers to the real life

problem.

The major part of mathematics education in primary schools consists in

step 4b. This is a task that any pocket calculator can perform much more

efficiently than any human being. In secondary schools, and often also in

University courses, mathematics consists essetially in step 4a. Clearly, this

step could be only performed by pen and paper until a few years ago. On the

other hand, starting from the sixties, the development of Macsyma at the

MIT introduced the automatic symbolic computation. Nowadays Maxima14,

a code distributed under a GPL licence, has taken the place of Macsyma. In

1980 the University of Waterloo (ON, Canada) developed Maple15, and in

1988 Stephen Wolfram introduced Mathematica16. These softwares, we will

provide examples with Mathematica, but our ideas apply to all of them, can

perform tasks 4a and 4b in a very efficient, fast and accurate manner. It

seems therefore a good idea to focus mathematics education, in particular

in a University curriculum, on the remaining steps.

14http://maxima.sourceforge.net
15http://www.maplesoft.com/products/maple/
16http://www.wolfram.com
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The fact that all the time spent in teaching computations (both symbolic

and numeric) shifts the focus of mathematics away from the most important

and creative part of problem solving is only one drawback of the pen and

paper teaching of mathematics. It is our opinion that the major drawback

consists in the fact that the computations can become often so compicated

(by which we mean that they not only require a lot of time to be performed,

but also they absorb all the attention of the student) that the true nature of

the problem remains hidden behind. In order to exemplify this idea, we per-

formed an experiment with some students in Mathematical Engineering at

the Politecnico di Milano. Some students of a class in Calculus in many vari-

ables have attended an extracurricular brief course in Mathematica. During

this course some problems have been addressed by leaving to the computer

the task of performing complicated computations. In the next section we

describe in detail one of these problems, which makes it very clear how the

use of Mathematica can provide a much better understanding of mathemat-

ics. We chose this particular example because it is quite clear that in this

case the computations by hand cannot be used to fully address the problem,

since they would require an enormous amount of time to be performed. On

the other hand, the same computations only require a few seconds to the

computer, so the students can appreciate the real issue at hand.

5. An experiment with the implicit function theorem

We consider a classic problem of calculus in several variables, the implicit

function theorem. Needless to say, this theorem has a very large number

of applications, but the statement of the theorem sounds very abstract and

unrelated to real life problems. We start with the statement of the theorem

in the simplest version:

Theorem 1. Let A ⊂ R
2 be an open set, letf : A → R be a continuously

differentiable function. Let (x0, y0) ∈ A be a zero of f . If
∂f(x0,y0)

∂y
6= 0,

then there exist neighborhoods U(x0) and U(y0) and a unique function y :

U(x0) → U(y0) such that y(x0) = y0, f(x, y(x)) = 0 for all x ∈ U(x0).

Furthermore, the function y is continuously differentiable and

(5.1) y′(x) = −
(

∂f(x, y(x))

∂y

)−1
∂f(x, y(x))

∂x
.

If additionally the function f is continuously differentiable k times, then so

is the function y. If f is analytical, then so is y,
9



Although the implicit function theorem guarantees the existence of the func-

tion y, it does not provide an algorithm to compute it explicitly, and in gen-

eral such function cannot even be represented in terms of elementary func-

tions, even in the simplest cases of f . On the other hand, when the function

f (and therefore y) is analytical, the implicit function theorem provides an

algorithm for the computation of the Taylor series

y(x) =
∞
∑

k=0

y(k)(x0)

k!
(x− xk0) .

More precisely, the first derivative is provided directly by (5.1), while the

following derivatives can be computed recursively by differentiating (5.1).

It is quite clear that this computation, although theoretically possible, is

totally unfeasible even when f has a relatively simple analytical expression,

due to the fact that the repeated differentiation of (5.1) rapidly generates a

very complicated expression. As an example, consider the function

f(x, y) = x3 + xy + y2 .

The following picture (also obtained with Mathematica) displays the approx-

imate zero level set of the function f in the square
[

−1
2 ,

1
2

]2
:

The point (x0, y0) =
(

−1
5 ,

1
50(5 + 3

√
5)
)

, marked in red in the figure, satisfies

the assumptions of the implicit function theorem. One easily computes

(5.2) y′(x) = −3x2 + y(x)

x+ 2y(x)
,
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so that y′(x0) = −1
2 − 11

6
√
5
. By differentiating (5.2), substituting (5.2) into

the result and simplifying the resulting expression one can compute

y′′(x) =
2
((

x− 12x2
)

y(x) + (1− 12x)y(x)2 − 9x4
)

(2y(x) + x)3
,

so that y′′(x0) =
16

√
5

27 . One could, in principle, iterate the same procedure

as many times as one wishes, and therefore compute all the derivatives of

y(k)(x0). On the other hand it is quite clear that such procedure, albeit

possible, becomes rather cumbersome even for the third derivative in the

case of a very simply function f .

As a consequence, one is led to teach a fundamental theorem of Mathemati-

cal Analysis without being able to present a satisfactory example in full, and

most importantly without being able to show one of the important conse-

quences of the theorem. This problem can be very easily circumvented by

using Mathematica as a teaching tool.

Here are the third and fourth derivatives of the function y, computed with

just a few lines of Mathematica code:

y(3) = − 1

(2y(x) + x)5

(

6
((

72x2 − 10x+ 1
)

x2y(x) +
(

72x2 + 6x+ 1
)

xy(x)2 +
(

54x2 − 9x+ 1
)

x4 + 32xy(x)3 + 16y(x)4
)

)

,

y(4) = − 1

(2y(x) + x)7











24
(

2
(

240x2 − 40x+ 1
)

xy(x)3

+
(

240x2 − 40x+ 1
)

y(x)4 + 6
(

108x2 + 15x− 4
)

x3y(x)2 +
(

648x3 − 150x2 + 16x− 1
)

x3y(x)+
(

405x3 − 108x2 + 15x− 1
)

x5
)











.

And here is the Taylor expansion of order 12 of the function y(x):

T (x) =
1

50

(

5 + 3
√
5
)

+

(

−1

2
− 11

6
√
5

)(

x+
1

5

)

+
8

27

√
5

(

x+
1

5

)2

+
35

243

√
5

(

x+
1

5

)3

+
325

√
5

2187

(

x+
1

5

)4

+
3875

√
5

19683

(

x+
1

5

)5

+
17500

√
5

59049

(

x+
1

5

)6

+
256250

√
5

531441

(

x+
1

5

)7

+
3953125

√
5

4782969

(

x+
1

5

)8

+
189921875

√
5

129140163

(

x+
1

5

)9

+
3128125000

√
5

1162261467

(

x+
1

5

)10

+
52660156250

√
5

10460353203

(

x+
1

5

)11

+
902128906250

√
5

94143178827

(

x+
1

5

)12

.

Needless to say, this kind of result is virtually impossible to obtain by hand.

What is interesting is that we can use the Taylor expansion to plot an ap-

proximation of the function defined implicitly and compare it with the level

set of the function f(x, y):
11



To make the experiment more interesting let us try a trascendent function,

e.g.

f(x, y) = x2ey + yex with (x0, y0) = (0, 0).

The 6th order Taylor expansion of the function defined implicitly at (x0, y0)

is:

(5.3) T (x) = −x2 + x3 +
x4

2
− 11

6
x5 +

11

24
x6 ,

and the following picture displays the approximate zero level set of f(x, y)

(black) and the graph of T (x) (green):

One may think that the computation of (5.3) is not a big deal; in fact, all
the coefficients look quite simple. But how have we computed that? For

12



brevity, we show here only the third derivative:

y
′′′

(x) = −

1
(

x2ey(x) + ex
)5

(

4x
7
e
5y(x)

+ x
5
e
4y(x)+x

(

x
3
y(x) − 6(x − 1)x + 16

)

+e
5x

y(x) + x
3
e
3y(x)+2x

(

3x
3
y(x)

2
− 2(x(x + 9) − 3)xy(x) − 6((x − 7)x − 2)

)

−

e
y(x)+4x

(y(x)(xy(x)(xy(x) + 6x − 6) + 2((x − 9)x + 3)) − 6x + 6) +

xe
2y(x)+3x

(

xy(x)
(

xy(x)(2xy(x) − 3(x + 4)) − 6
(

x
2
− 6

))

+ 6(x(x + 5) − 4)
)

,(5.4)

and we leave to the reader imagination to figure out how the sixth derivative

looks like, although we mention that to print it explicitly would take ap-

proximately 40 lines similar to (5.4). Our point is that, although the Taylor

polynomial of the function y(x) looks very simple, in order to compute it

one has to go through a very complicated computation, so complicated that

not even the most courageous and determined student could perform it. But

this computation is just the mean, not the end of the example. In fact the

main result of this example should be to show the student how a function

defined implicitly can be locally approximated by a polynomial.

6. Students’ feedback

We wish to underline that our experiment was done with a group of students

with a very good mathematical background in an advanced mathematical

analysis course, while typical issues in mathematics education are usually

discussed in the primary or secondary school context. We have discussed

with the students who joined this experiment some of the topics addressed

in this paper, in particular how the teaching of the mathematics should be

oriented to the solution of problems, not to computation algorithms, and

how cumbersome computations can come in the way of providing good ex-

amples of important theorems. We have shown that, fortunately, there is

an easy way of getting rid of such computations, i.e. the use of software

for symbolic computation. Software like Mathematica can relieve both the

teacher and the students of the burden of computations, and can allow the

focus of the teaching to be on the main issues. In particular, we have de-

scribed in this paper one of many topics we covered with the students in

Mathematical Engineering. In all such topics, good examples of the theory

could be provided in a clean and effective way through Mathematica. But

this is not the only positive outcome of these experiments. The students felt

that the use of the software made the topics much more appealing, because

it made much easier to see the importance of the mathematical theory and

also because programming is more fun than making computations by hand.

More importantly, the students appreciated being challenged by problems to

solve. In fact, the algorithm to compute the Taylor series explained above

(and many other developed during the course) was not made available to
13



them, but they were led to develop it through careful suggestions, so that

we made possible to teach mathematics through problem solving and not

through exercises. We feel that this kind of experiments should be pursued

further teaching mathematics at advanced level.
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