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NONCOMMUTATIVE POTENTIAL THEORY: A SURVEY

FABIO CIPRIANI

Abstract. The aim of these notes is to provide an introduction to Noncommutative Poten-
tial Theory as given at I.N.D.A.M.-C.N.R.S. ”Noncommutative Geometry and Applications”
Lectures, Villa Mondragone-Frascati June 2014.
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1. Introduction.

The aim of these notes is to provide an overview of the potential theory on operator algebras
based on Dirichlet forms, as illustrated at Villa Mondragone-Frascati Lectures in June 2014.

Some of the main basic results of the theory are accompanied by sketches of their proofs, some
others are given together with detailed verifications and the main subjects are illustrated
by explicit examples. This part includes the generalized Beurling-Deny correspondence be-
tween Dirichlet forms and Markovian semigroups, the differential calculus underlying Dirichlet
spaces, potentials, finite energy states and multipliers of Dirichlet spaces and the generalized
Deny’s inequality.
In particular, the construction of a natural Dirac operator and spectral triple, by the differ-
ential calculus associated to a Dirichlet form, opens the possibility to use the methods of A.
Connes to explore the Noncommutative Geometry underlying Dirichlet spaces.

On the other hand, efforts have been done to provide contacts with other fields of operator
algebras and to illustrate recent applications to other sectors of mathematics. In this respect
we include, the construction and analysis of quantum Lévy processes on compact quantum
groups, the connections between approximation properties of von Neumann algebras and
spectra of Dirichlet forms, potential theory on the Clifford algebra of Riemannian manifolds
and positive curvature, Dirichlet forms in Free Probability and the noncommutative approach
to the potential theory of fractal sets.

To keep the length of the notes contained, some important subjects are not included such
as the role of Dirichlet spaces in the K-theory of certain Banach algebras appearing toward
mod Hilbert-Schmidt extension of the BDF-theory (see [V3]), the use of Dirichlet forms in
Quantum Statistical Mechanics and infinite dimensional settings (see [LOZ]) and the sub-
gaussian behavior of random variables in noncommutative probability (see [JZ]).

I wish to thank warmly the organizers and the audience for attending the lectures and taking
part brightly to numerous discussions.

2. A review of classical potential theory

Classical potential theory (see [Ca], [Do]) concerns properties of the Dirichlet integral

D : L2(Rd)→ [0,+∞] D[u] :=

∫
Rd
|∇u|2 dm .

This is a lower semicontinuous quadratic form on the Hilbert space L2(Rd,m) which is finite on
the Sobolev space H1,2(Rd). It is thus a closed quadratic form whose associated nonnegative,
self-adjoint operator is the Laplace operator

∆ := −
d∑

k=1

∂2
k D[u] = ‖

√
∆u‖2

2 .

It generates the heat semigroup e−t∆ : L2(Rd,m)→ L2(Rd,m), whose heat kernel

e−t∆(x, y) = (4πt)−d/2e−
|x−y|2

4t

is the fundamental solution of the heat equation ∂tu + ∆u = 0. The contraction property
called Markovianity

D[u ∧ 1] ≤ D[u] u = u ∈ L2(Rd,m)
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is responsible for the Maximum Principle for harmonic functions, i.e. solutions of the Laplace
equation ∆u = 0, the Maximum Principle for solution of the heat equation, continuity,
contractivity and positive preserving properties of the heat semigroup e−t∆ on the spaces
L2(Rd,m), L∞(Rd,m), L1(Rd,m).
The Brownian motion (Ω, Px, Xt) is the Markovian stochastic processes on Rd associated to
the heat semigroup through

(e−t∆u)(x) =

∫
Ω

u(Xt(ω))Px(dω) .

The polar sets of the Brownian motion, i.e. the subsets of Rn almost surely avoided by the
process, can be identified with the Cap (B) = 0 sets for the electrostatic capacity Cap defined
by D. This is the set function defined initially on open sets A ⊂ Rn by

Cap(A) := inf{D[u] : u ∈ H1,2(Rn) , u ≥ 1A m− a.e.}
and then extended to arbitrary Borel sets as

Cap(B) := inf{Cap(A) : B ⊆ A , A ⊂ Rn open} .
The capacity is strongly subadditive in the sense that

Cap(A ∪B) + Cap(A ∩B) ≤ Cap(A) + Cap(B)

for all Borel sets A, b ⊆ Rn and by Choquet’s capacity theory it can be extended to arbitrary
analytic subsets of the Euclidean space.

The above properties are proved by the explicit knowledge of the Green function

(∆−1u)(x) =

∫
Rd
G(x, y)u(y)m(dy) G(x, y) = |x− y|2−d d ≥ 3 .

A. Beurling and J. Deny developed in the late fifthes [BeDe 1,2] a kernel free potential theory
on measured, locally compact Hausdorff spaces (X,m), generalizing the notion of Dirichlet
integral as a closed quadratic form (E ,F) on L2(X,m) which is Markovian in the sense

E [u ∧ 1] ≤ E [u] u = u ∈ F .
Their extension of potential theory was based on the notion of regularity of Dirichlet forms:
one requires that there are sufficiently many finite energy continuous function in the sense
that C0(X) ∩ F is a form core uniformly dense in C0(X). M. Fukushima achieved in the
middle sixties [F 1,2] the construction of the Hunt Markovian process on X associated to
a given Dirichlet form. The construction is based on the potential theory of a Dirichlet
space and especially on the notion of capacity associated to (E ,F). The work establishes
a complete correspondence between Dirichlet forms, Markovian semigroups and symmetric
Hunt processes on locally compact spaces (see [F 1,2], [FOT]).

3. Noncommutative Potential Theory

The need to extend the notion of Markovian semigroup to non commutative settings, where
recognized by L. Gross in his works [G 1,2] about the construction of Hamiltonians for in-
teracting bosons and fermions systems in Quantum Field Theory (see also [SU]). Markovian
semigroups play also an important role to study Open Quantum Systems (see [Dav1]). Sub-
sequently S. Albeverio and R. Hoegh-Krohn extended the Beurling-Deny theory of Dirichlet
forms to the setting of a C∗-algebra with trace ([AHK1], [AHK2]). This theory and ap-
plications were limited to the tracial case; it was studied and applied by various authors:
among them, E.B. Davies - O.S. Rothaus [DR1,2] investigated the spectral properties of
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the Bochner Laplacian on Riemannian manifolds, J.-L. Sauvageot constructed the transverse
heat semigroup of a Riemannian foliation [S 2,3,4], E.B. Davies - J.M. Lindsay [DL] deepened
the connections between Dirichlet forms and Markovian semigroups and D. Guido - T. Isola
- S. Scarlatti extended these notions to the non-symmetric case [GIS]. In particular, J.L.
Sauvageot [S1] discovered that every dissipation on a C∗-algebra A with trace is canonically
represented by a closed derivation in a C∗-Hilbert A-bimodule.
To deal with Markovian semigroups and Dirichlet forms with respect to not necessarily tracial
states, the framework was later extended to von Neumann algebras with separable predual,
in the Haagerup standard form by S. Goldstein and J.M. Lindsay in [GL 1,2] and to general
standard forms in [C 1,2]. The extension to von Neumann algebras with non separable predual
was realized in [GL3]. See also the recent [Ri2] for a survey of applications.

3.1. Dirichlet forms and Markovian semigroups on von Neumann algebras. To
handle the situation of a von Neumann algebraM with separable predual and normal faithful
state ω ∈ M∗+, one exploits the structure of its standard form (M, L2(M), L2

+(M), J).
Denoting by ξω ∈ L2

+(M) the cyclic vector representing the state, the nonlinear contraction
u 7→ u ∧ 1, on which the Markovianity of Dirichlet forms in the commutative case is based,
is understood as the projection ξ 7→ ξ ∧ ξω of real vector ξ = Jξ ∈ L2(M) onto the closed
and convex set ξω−L2

+(M) = {ξ ∈ L2(M) : ξ = Jξ ≤ ξω}. Notice that, despite the notation
adopted, the subspace of real vectors is a lattice if and only if M is commutative.
By the self-polarity of the positive cone L2

+(M), any vector ζ ∈ L2(M) can be can written
ζ = ξ+ iη in terms of its real and imaginary parts defined as ξ := (ζ+Jζ)/2, η := (ζ−Jζ)/2.
The positive part ζ+ of a real vector ζ = Jζ ∈ L2(M) is defined as its Hilbert projection onto
the positive cone L2

+(M). The properties of the Hilbert projection, ensure that the negative
part, defined as ζ− := ζ+ − ζ, is positive ζ− ∈ L2

+(M) and orthogonal to ζ+ so that the
real vector can be written uniquely as the difference ζ = ζ+ − ζ− of two positive, orthogonal
vectors. The modulus of the real vector ζ is defined as |ζ| := ζ+ + ζ−.

The unique trace state on the full matrix algebra Mn(C) will be denoted by trn.

Definition 3.1. (Markovian semigroups) A self-adjoint C0-semigroup {Tt : t ≥ 0} on L2(M)
is Markovian with respect to ω ∈M∗+ if

• Tt ◦ J = J ◦ Tt t ≥ 0 (reality)
• ξ ≤ ξω ⇒ Ttξ ≤ ξω t ≥ 0 (Markovianity)
• {Tt : t ≥ 0} on L2(M) is completely Markovian if its matrix expansions

T nt ([ξij]ij) := [Ttξij]ij

are Markovian semigroups on L2(M⊗Mn(C)) with respect to the state ω ⊗ trn.

It can be proved that Markovian semigroups are necessarily contractive on L2(M) and
positive preserving in the sense that Tt(L

2
+(M)) ⊆ L2

+(M) for all t > 0. Moreover, if
Ttξω = ξω for all t > 0, then Markovianity is equivalent to the positive preserving property.

Using the properties of the symmetric embedding iω :M→ L2(M) iω(x) := ∆
1/4
ω xξω

one can relate Markovian semigroups on the Hilbert space L2(M) to semigroups on the von
Neumann algebra M. In the following, {σωt : t > 0} will denote the modular group of ω and
Mσω the subalgebra of its analytic elements.

Theorem 3.2. (Modular ω-symmetry) Markovian semigroups on L2(M) with respect to ω are
in one to one correspondence with C∗0-continuous, positive preserving, contractive semigroups
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{St : t ≥ 0} on M which are modular ω-symmetric in the sense that

ω(St(x)σω−i/2(y)) = ω(σω−i/2(x)St(y)) x, y ∈Mσω , t > 0 ,

through the relation

i0(St(x)) = Tt(i0(x)) x ∈M , t > 0 .

Moreover, {Tt : t > 0} is completely Markovian if and only if {St : t > 0} is completely
Markovian, i.e. it is a completely positive, normal, contractive semigroup.

Remark 3.3. The weak∗-continuity of semigroups on von Neumann algebras is in many respect
the natural one. By a result due to G. A. Elliott [E], strongly continuous semigroups on W∗-
algebras are automatically norm continuous, thus with bounded generators.

Symmetric Markovian semigroups on the von Neumann algebraM or on the Hilbert space
L2(M) can be characterized in terms of the following class of quadratic forms.

Definition 3.4. (Dirichlet forms) A Dirichlet form E : L2(M)→ (−∞,+∞] with respect to
ω ∈M∗+ is a lower semibounded, lower semicontinuous, quadratic form such that

• the domain F := {ξ ∈ L2(M) : E [ξ] < +∞} is dense in L2(M)
• E [Jξ] = E [ξ] for all ξ ∈ L2(M) (reality)
• E [ξ ∧ ξ0] ≤ E [ξ] for all ξ = Jξ ∈ L2(M) (Markovianity)
• (E ,F) is a complete Dirichlet form if its matrix expansions for n ≥ 1

En[(ξij)ij] :=
∑
ij

E [ξij]

are Dirichlet forms on M⊗Mn(C) with respect to the normal state ω ⊗ trn.

The domain F is called Dirichlet space when endowed with the graph norm

‖ξ‖F :=
√
E [ξ] + ‖ξ‖2

L2(M) .

It can be proved that Dirichlet forms are necessarily nonnegative. In case E [ξω] = 0,
Markovianity is equivalent to the contraction property E [|ξ|] ≤ E [ξ] for ξ = Jξ ∈ L2(M). This
property is in general weaker than Markovianity and corresponds to the positive preserving
property of the semigroup. The following result connects the dynamical aspects of the theory
to the infinitesimal ones (see [C 1,2], [GL 1,2]).

Theorem 3.5. (Generalized Beurling-Deny correspondence) Dirichlet forms are in one to
one correspondence with Markovian semigroups by

E [ξ] = lim
t→0

1

t
(ξ|a− Ttξ) a ∈ F

or through the self-adjoint generator (L, dom (L))

Tt = e−tL E [a] = ‖
√
La‖2

L2(A,τ) a ∈ F = dom (
√
L) .

Completely Dirichlet forms on L2(M) are in one to one correspondence with modular symmet-
ric, completely Markovian semigroups on L2(M) and with completely Markovian semigroups
on M.

Remark 3.6. i) By duality and interpolation, Markovian semigroups extend to C0-semigroups
on noncommutative Lp(M) spaces, p ∈ [1,+∞]. The extension to the predualM∗ = L1(M)
is particularly important in ceratin applications to Quantum Information Theory (channels).
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ii) Extending Markovian semigroups from M to L2(M) via non symmetric embeddings

iα(x) := ∆α
ξ0
xξ0 α ∈ [0, 1/2] α 6= 1/4 ,

one gets semigroups on L2(M) which automatically commute with the modular operator ∆ω.

The structure of the self-dual positive cone L2
+(M) allows to approach ergodic properties

of Markovian semigroups from different perspectives. For example, faces F of the self-polar
cone L2

+(M) are in one to one correspondence with Peirce projections Pe = eJeJ associated
to projections e ∈ Proj (M)

F = Pe(L
2
+(M, ω)) .

The following characterization (see [C3]) was proved in the trace case by L. Gross and applied
to establish uniqueness of physical ground states for interacting bosons and fermions systems.
Notice that the cyclicity of a positive vector ξ ∈ L2

+(M) is equivalent to the fact that (ξ|η) > 0
for all η ∈ L2

+(M).

Theorem 3.7. (Ergodic Markovian semigroups) The following properties are equivalent:

• the Markovian semigroup {Tt : t ≥ 0} on L2(M) is ergodic:
for ξ, η ∈ L2

+(M, ω) there exists t > 0 such that (ξ|Ttη)2 > 0
• the Markovian semigroup {Tt : t ≥ 0} on L2(M) is indecomposable:

for some t > 0, Tt leaves invariant no proper face of the cone L2
+(M)

• λ := inf{E [ξ] : ‖ξ‖2 = 1} is a Perron-Frobenius eigenvalue:
it is a simple eigenvalue with cyclic eigenvector ξλ ∈ L2

+(M).

3.2. KMS symmetric semigroups on C∗-algebras. Dirichlet forms may be used to study
properties of completely positive, contractive semigroups on C∗algebras in case they posses
the following symmetry with respect to a fixed KMS state (see [C5]).
Let {αt : t ∈ R} be a strongly continuous automorphisms group on the C∗-algebra A, Aα the
algebra of its analytic elements and let ω ∈ A∗+ be a KMSβ-state for β ∈ R.

Definition 3.8. (KMS symmetric semigroups on C∗-algebras) A C0-semigroup {St : t ≥ 0}
on A is KMSβ ω-symmetric if

ω(bSt(a)) = ω(α− iβ
2

(a)St(α+ iβ
2

(b))) a, b ∈ B

for some a dense, α-invariant, ∗-subalgebra B ⊆ Aα or, equivalently,

ω(α− iβ
2

(b)St(a)) = ω(α− iβ
2

(a)St(b)) a, b ∈ B .

Remark 3.9. i) KMS symmetry is a deformation of the KMS condition, in fact for t = 0 we
get

ω(ba) = ω(α− iβ
2

(a)α+ iβ
2

(b)) = ω(aα+iβ(b)) a, b ∈ B .

ii) In case {αt : t ∈ R} and {St : t ≥ 0} commute, KMS symmetry reduces to GNS symmetry

ω(bSt(a)) = ω(St(b)a) a, b ∈ A ,
a property that has been mostly used to formulate detailed balance conditions for open quan-
tum systems.

In the spirit of KMS theory, the above symmetry may formulated in different guises, as for
example

Proposition 3.10. Consider the open strip Dβ := {z ∈ C : Im(z) ∈ (0, β)}. The following
conditions are equivalent
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• a C0-semigroup {St : t ≥ 0} on A is KMSβ ω-symmetric
• for any a, b ∈ A and on the KMS-strip Dβ ⊂ C there exists a bounded continuous

function Fa,b : Dβ → A, analytic in Dβ such that for s ∈ R, t ≥ 0

Fa,b(s) = ω(α−s(a)St(α+s(b))) , Fa,b(s+ iβ) = ω(α+s(b)St(α−s(a))) .

Let ω ∈ A∗+ be a KMSβ-state for {αt : t ∈ R} ⊂ Aut (A) and consider the cyclic GNS
representation (πω,Hω, ξω) of A, the von Neumann algebra M := πω(A)′′ and the normal
extension of ω to M given by ω(x) := (ξω|πω(x)ξω)2 , x ∈ M and associated modular au-
tomorphisms group {σωt : t ∈ R} of M. A standard form on the space L2(M, ω) ' Hω is

determined by L2
+(M, ω) = {∆1/4

ω πω(A+)ξω}.
The virtue of KMS symmetry is to force the semigroup to leave globally invariant the kernel
of the cyclic representation of ω and thus to allows the study of the semigroup on the von
Neumann algebra and on the standard Hilbert space L2(M, ω).

Theorem 3.11. A KMSβ ω-symmetric, C0-semigroup {St : t ≥ 0} on A

• leaves globally invariant the kernel of the cyclic representation

St(ker (πω0)) ⊆ ker (πω0) t > 0;

• it extends to a modular ω-symmetric, C∗0-semigroup {Tt : t ≥ 0} on the von Neumann
algebra M by

Tt ◦ πω = πω ◦ St t > 0;

• it extends to a Markovian semigroup on L2(M, ω);
• it determines a Dirichlet form on L2(M, ω).

The generators of norm continuous, completely positive, contractive semigroup on the
hyperfinite type I factor, has been classified by G. Lindblad [L]. Using the properties of
standard forms however, one may consider on any von Neumann algebras semigroups and
their generators of similar type (see [C 1,2]).

Example 3.12. (Bounded Dirichlet forms)
On a standard form (M, L2(M), L2

∗(M), J) consider the normal state ω ∈ M∗+ and define
j(x) := Jx∗J for x ∈M.
For fixed, finite subsets {ak : k = 1, . . . , n} ⊂ M, {µk, νk : k = 1, . . . , n} ⊂ (0,+∞), define
the bounded operators

dk : L2(M)→ L2(M) dk := i(µkak − νkj(ak))
and the bounded quadratic form on L2(M) by E [ξ] :=

∑n
k=1 ‖dkξ‖2

L2(M). Then (E , L2(M) is

i) J-real iff
∑n

k=1[µ2
ka
∗
kak − ν2

kaka
∗
k] ∈M∩M′;

ii) Markovian if moreover
∑n

k=1[µ2
ka
∗
kak − µkνk(akj(ak) + a∗kj(a

∗
k)) + ν2

kaka
∗
k]ξω ≥ 0;

iii) the associated Markovian semigroup is conservative, Ttξω = ξω for all t ≥ 0, if moreover
the numbers (µk/νk)

2 are eigenvalues of the modular operator ∆ω with eigenvectors akξω;
iv) the generator has the form L =

∑n
k=1[µ2

ka
∗
kak − µkνk(akj(ak) + a∗kj(a

∗
k)) + ν2

kaka
∗
k].

Condition i) is typically ensured in the framework of q-deformed Fock spaces and related
factors [BKS].

Example 3.13. (Quantum Ornstein-Uhlenbeck semigroups)
Consider the canonical base {ek : k ∈ N} of Hilbert space h := l2(N), the C∗-algebra of com-
pact operators K(h), the von Neumann algebra of bounded operators B(h) and the Hilbert-
Schmidt standard form (B(h),L2(h),L2

+(h), J).



8 FABIO CIPRIANI

Fix parameters µ > λ > 0, set ν := (λ/µ)2 and consider the state

ων(x) := (1− ν)
∑
k≥0

νk(ek|xek) x ∈ K(h)

with cyclic vector ξν := (1 − ν)1/2
∑

k≥0 ν
k/2ek ⊗ ek. The creation/annihilation operators,

defined as
a∗(ek) :=

√
k + 1ek+1 a(ek) :=

√
kek−1 a(e0) = 0

satisfy the Canonical Commutation Relation: aa∗ − a∗a = I. Then the closure of the
quadratic form (E ,F) on L2(h)

E [ξ] := ‖µaξ − λξa∗‖2 + ‖µaξ∗ − λξ∗a∗‖2 F := linear span{ek ⊗ el : k, l ∈ N}
is a Dirichlet form and the associated Markovian semigroup induces an ergodic, Markovian,
C0-semigroup on K(h) leaving the state ων invariant.
Semigroups corresponding to this class of Dirichlet forms reduces to interesting classical
Markovian semigroups on suitable maximal abelian subalgebras of B(h) both atomic and
diffuse.

4. Quantum Lévy Processes on Compact Quantum Groups

In classical potential theory probably the most studied class of Markovian semigroups is
the one corresponding to Lev’y processes on Lie groups. These are processes and semigroups
that commute with the left translations provided by the action of the group on itself. In this
section we will describe an extension of that commutative situation on Compact Quantum
Groups (see [CFK] for details).

Let us recall that a compact quantum group G = (A,∆) is a unital C∗-algebra A =: C(G)
together with
i) a coproduct ∆ : A→ A⊗ A, a unital, ∗-homomorphism which is
ii) coassociative (∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆ and satisfies
iii) cancelation rules Lin((1⊗ A)∆(A)) = Lin((A⊗ 1)∆(A)) = A⊗ A.

HereA⊗A denotes the projective tensor product of Banach spaces. A unitary co-representation
of G is a unitary matrix U = (ujk) ∈ Mn(A) such that ∆(ujk) =

∑n
p=1 ujp ⊗ upk for all

j, k = 1, . . . , n.

A theorem due to Woronowicz states that, if {U s : s ∈ Ĝ} is a complete family of inequivalent
irreducible, unitary co-representations of G, the algebra of polynomials, defined by

Pol(G) := Span{usjk; s ∈ Ĝ, 1 ≤ j, k ≤ ns}
is a dense Hopf ∗-algebra with counit ε(usjk) := δjk and antipode S(usjk) := (uskj)

∗ satisfying
the rules (mA being the product in A)

(ε⊗ id)∆(a) = a (id⊗ ε)∆(a) = a mA(S ⊗ id)∆(a) = ε(a)I = mA(id⊗)∆(a) .

A result due to Woronowicz [...] ensures that the C∗-algebra of a compact quantum group
A = C(G) is commutative if and only if it is of the form A = C(G) for some compact group
G with unit e ∈ G. Noticing that A ⊗ A = C(G × G), in this case the co-multiplication is
defined dualizing the product operation in G

(∆f)(s, t) = f(st) f ∈ C(G) , s, t ∈ G .
Counit and antipode are defined by ε(f) := f(e) and S(f)(s) := f(s−1), for f ∈ C(G) and
s ∈ G.
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Combining the tensor product operation with the co-multiplication, one may introduces
new operations that in the case of compact group reduce to well known classical ones.

Definition 4.1. (Convolution)
i) Convolution ξ ∗ ξ′ ∈ A∗ of functionals ξ , ξ′ ∈ A∗ is defined by

ξ ∗ ξ′ := (ξ ⊗ ξ′) ◦∆ ;

ii) convolution ξ ∗ a ∈ A of a functional ξ ∈ A∗ and an element a ∈ A is defined by

ξ ∗ a := (id ⊗ ξ)(∆a) a ∗ ξ := (ξ ⊗ id )(∆a) .

Again by a result of Woronowicz, on a compact quantum group G = (A,∆) there exists a
unique (Haar) state h ∈ A∗+ which is both left and right invariant in the sense that

a∗h = h∗a = h(a)1A a ∈ A .
It is a (σ ,−1)-KMS state with respect to a suitable ∗-automorphisms group of A

{σt : t ∈ R} h(ab) = h(σ−i(b)a) a, b ∈ A .
Notice that, in general, the Haar state is not a trace. Compact quantum groups for which
the Haar state is a trace are called Kac quantum groups.

By a result of Woronowicz, the antipode S is a closable operator on A and its closure S
admits the polar decomposition a

S = R ◦ τ i
2
,

where
i) τ i

2
generates a ∗-automorphisms group {τt : t ∈ R} of the C∗-algebra A and

ii) R is a linear, anti-multiplicative, norm preserving involution on A such that τt ◦R = R◦ τt
for all t ∈ R, called unitary antipode.

Example 4.2. The compact quantum group SUq(2) = (A,∆), 0 < q ≤ 1, is given by the
universal C∗-algebra A generated by the coefficients of the matrix

U =

(
α −qγ∗
γ α∗

)
with relations on α and γ ensuring unitarity UU∗ = U∗U = 1. The other relation are
i) co-multiplication ∆(α) := α⊗ α + γ ⊗ γ, ∆(γ) := γ ⊗ α + α∗ ⊗ γ
ii) counit ε(α) = 1 ε(γ) = 0
iii) antipode S(α) := α∗ , S(γ) := −qγ , S(usjk) = (−q)(j−k)us−k,−j
iv) Haar state h(usjk) = δs,0
v) automorphisms group σz(u

s
jk) = q2iz(j+k)usjk z ∈ C

vi) unitary antipode R(usjk) = qk−j(uskj)
∗.

4.0.1. Quantum Lévy Processes. Here we recall the some basic definitions of Quantum Prob-
ability concerning stochastic processes in the noncommutative setting.

Let A = Pol (G) be the Hopf ∗-agebra of a compact quantum group and (P ,Φ) a noncom-
mutative probability space, i.e. a von Neumann algebra with a normal state on it.

i) A Random variable on A is a ∗-algebra homomorphism j : A → P ;
ii) the distribution of the random variable j : A → P is the state ϕj = Φ ◦ j on A;
iii) the convolution of the random variables j1, j2 : A → P is the random variable

j∗1j2 = mP ◦ (j1 ⊗ j2) ◦∆ ,
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where mP denotes the product in P .

A Quantum Stochastic Process on A is a family of random variables (js,t)0≤s≤t≤T satisfying

i) jtt = ε1P for all 0 ≤ t ≤ T
ii) the increment property: j∗rsjst = jrt for all 0 ≤ r ≤ s ≤ t ≤ T
iii) weak continuity: jst converges to jss in distribution for t↘ s and all 0 ≤ s ≤ T .

Definition 4.3. (Lévy Process) A quantum stochastic process on the Hopf algebra A is
called a Lévy Process provided it has

• independent increments, i.e. for disjoint intervals (ti, si], i = 1, · · · , n
Φ
(
js1t1(a1)...jsntn(an)

)
= Φ

(
js1t1(a1)

)
...Φ
(
jsntn(an)

)
and [jsi,ti(a1), jsj ,tj(a2)] = 0 for i 6= j;
• stationary increments, i.e. ϕst := Φ ◦ jst depends only on t− s.

The following result establishes a bridge allowing the study the probabilistic subject of
Lévy Processes from an analytic point of view.

Theorem 4.4. Lévy processes {jst : 0 ≤ s ≤ t < +∞} on a the Hopf ∗-algebra A = Pol(G)
are in one to one correspondence with Markovian semigroups {Tt : t > 0} on A = C(G) which
are translation invariant in the sense that the following identity holds true

∆ ◦ Tt = (id⊗ Tt) ◦∆ t ≥ 0 .

To sketch the construction of the semigroup from the process, consider first that the distri-
butions ϕt := ϕ0,t = Φ ◦ j0,t form a continuous convolution semigroup of states on A:

ϕ0 = ε ϕs ∗ ϕt = ϕs+t lim
t→0

ϕt(b) = ε(b) b ∈ A .

Its generating functional defined as G = d
dt
ϕt
∣∣
t=0

, pointwise on a suitable domain, allows
to reconstruct the distributions a convolution exponential ϕt = exp∗ tG for all t > 0. A
semigroup Tt : A → A is then defined by convolution

Tta := ((id⊗ ϕt) ◦∆)(a) = ϕt ∗ a, t ≥ 0 , a ∈ A
and its formal infinitesimal generator L : A → A results as the convolution operator associ-
ated to the generating functional

L(a) = (id⊗G) ◦∆(a) = G ∗ a a ∈ A .
The semigroup then extends to a translation invariant, Markovian semigroup {Tt : t > 0} on
A and its generator is the closure of L. Moreover, the relations

G = ε ◦ L , ϕt = ε ◦ Tt t > 0

allow to get the generating functional and the distributions directly from the generator and
the semigroup.

The generating functionals of Lévy processes or Lévy semigroups can also be described
cohomologically by 1-cocycles of the Hopf ∗-algebra .

Definition 4.5. A Schürmann triple ((π,K), η, G) on the Hopf ∗-algebra A consists of:

(1) a unital ∗-representation π : A → B(K) of A on some pre-Hilbert space K,
(2) a 1-cocycle η : A → K of the representation (π,K), i.e. a linear map verifying

η(ab) = π(a)η(b) + η(a)ε(b) for all a, b ∈ A,
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(3) a hermitian linear functional G : A → C satisfying

G(ab) = 〈η(a∗), η(b)〉K for a, b ∈ ker ε.

Theorem 4.6. In a Schürmann triple ((π,D), η, G), the functional G is the generating func-
tional of a Lévy process on the Hopf ∗-algebra A.
Conversely, the generating functional G of any Lévy process on A arises from a 1-cocycle of
a Schürmann triple (uniquely modulo unitary equivalence on the range of the cocycle).

The KMS symmetry of a Lévy semigroup with respect to the Haar state, may be detected
through its generating functional by the use of the unitary antipode.

Theorem 4.7. Let e−tL be a Lévy semigroup on A with generating functional G = ε ◦ L.
The following properties are then equivalent

• the semigroup is KMS−1 symmetric with respect to the Haar state
• the generator is KMS−1 symmetric with respect to the Haar state
• the generating functional is invariant by the action of the unitary antipode R

G = G ◦R on the Hopf ∗-algebra A = Pol (G) .

Later in these notes, we will see the connection between the Dirichlet form of a Lévy process
and the associated Schürmann triple.

We end this section with a useful description of the spectrum of the generator of a Lévy semi-

group in terms of a complete family {us : s ∈ Ĝ} of irreducible, unitary co-representations.

Proposition 4.8. The standard Hilbert space of the Haar state L2(A, h) decomposes as an
orthogonal sum of the finite dimensional subspaces

L2(A, h) =
⊕
s∈Ĝ

Es Es := Span {usjkξh : j, k = 1, · · · , ns} s ∈ Ĝ .

Correspondingly, the generator L of a KMS−1 symmetric Lévy semigroup decomposes as a
direct sum L =

⊕
s∈Ĝ Ls of its restrictions Ls to the L-invariant subspaces Es so that its

spectrum has the following structure σ(L) =
⋃
s∈Ĝ σ(Ls).

Example 4.9. (Free orthogonal quantum group O+
N). The universal C∗-algebra Cu(O

+
N) of

the free orthogonal quantum group O+
N is generated by elements {vjk = v∗jk : i, k = 1, · · · , N}

subject to the relations

N∑
l=1

vljvlk = δjk =
N∑
l=1

vjlvkl ∆vjk =
N∑
l=1

vlj ⊗ vlk .

The Haar state h is a trace which is faithful on Pol(O+
N) but not on Cu(O

+
N), thus the Lévy

semigroup e−tL is constructed on the reduced C∗-algebra Cr(O
+
N) (determined by the GNS

representation of the Haar state). The classes of irreducible, unitary co-representations are

parameterized by Ô+
N
∼= N. Denote by Us ∈ Pol[−N,N ] the Chebyshev polynomial of the

second kind, defined recursively as follows

U0(x) = 1, U1(x) = x, Us(x) = xUs−1(x)− Us−1(x), x ∈ [−N,N ], s ∈ N .
A generating functional is then defined by

G(u
(s)
jk ) := δjk

U ′s(N)

Us(N)
, s ∈ N , j, k = 1, · · · , Us(N) .
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The generator L has discrete spectrum with eigenvectors u
(s)
jk corresponding to eigenvalues

and multiplicities given by

λs =
U ′s(N)

Us(N)
, ms = (Us(N))2 .

In particular, spectral dimensions are given by dN = 3 for N = 2 and by dN = +∞ for N ≥ 3.

5. Approximation Properties of von Neumann algebras and spectrum of
Dirichlet forms

In this section we describe two recent results concerning the connection between the spec-
trum of Dirichlet forms and approximation properties of von Neumann algebras, namely the
Haagerup Approximation Property and Amenability (see [CS], [CS6]).

A second countable, locally compact group G has the Haagerup Approximation Property HAP
if there exists a sequence of normalized, positive definite functions ϕn ∈ C0(G), converging
to the constant function 1, uniformly on compact subsets. Equivalently, G has the HAP if
it admits a proper, continuous, negative definite function. For example, by a famous result
of U. Haagerup [Haa1], the free groups Fn with n ≥ 2 generators have the HAP since their
length functions are negative definite. The HAP has deep relations with several aspects of
group theory, in particular, it plays a fundamental role in Higson-Kasparov [HiK] work on
the Baum-Connes conjecture (see [CCJJV] for details).
A long research initiated by A. Connes and Jones (see [CJ]) culminated with various equiv-
alent definitions of the HAP for general von Neumann algebras (see [CS]). The HAP for
von Neumann algebras features prominently in S. Popa deformation rigidity program for II1

factors [Po].

Definition 5.1. (Haagerup Approximation Properties for von Neumann algebras)
1. (Caspers-Skalski) A von Neumann algebra M has the Haagerup approximation property
with respect to a normal, semifinite, faithful weight ϕ on it if there exists a sequence Sn :
M→M of completely positive, ϕ-non-increasing maps onM such that their induced maps
Tn : L2(M, ϕ) → L2(M, ϕ) on the standard space L2(M, ϕ) are compact and strongly
convergent to the identity map.

2. (Okayasu-Tomatsu) A von Neumann algebraM has the standard form Haagerup approx-
imation property if there exists a sequence Tn : L2(M) → L2(M) of contractive, completely
positive, compact operators on a standard space L2(M), strongly convergent to the identity
map.

These properties has been shown to be equivalent and they are collectively referred as
Haagerup approximation property. In view of the generalized Beurling -Deny correspondence
between Markovian semigroups and Dirichlet forms on standard forms of von Neumann alge-
bras, it is not surprising that the HAP can be characterized spectrally from an infinitesimal
point of view. In fact we have the nice result

Theorem 5.2. (Caspers-Skalski) The following properties are equivalent

• The von Neumann algebra M has the Haagerup Approximation Property;
• there exists a Dirichlet form (E ,F) on some standard form of M, having discrete

spectrum.

As an application Caspers-Skalski obtained in [CS] an independent proof of the following
result of M. Brannan [Br].
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Theorem 5.3. The von Neumann algebras L∞(Cr(O
+
N), h) of the free orthogonal quantum

groups O+
N in the cyclic representation of the Haar state h on L2(Cr(O

+
N), h), have Haagerup

Approximation Property.

The result follows from the Caspers-Skalski equivalence and the construction of a Dirichlet
form with discrete spectrum illustrated in Example 4.9.

By the previous result, it is natural to inquire if more specific discreteness conditions,
about the spectrum of a Dirichlet form on a von Neumann algebraM, may provide stronger
approximation properties for M.
As a guiding result we may recall the one concerning the amenability of a finitely generated
group Γ (see for example [CCJJV]): if there exists a negative type function ` having sub-
exponential growth ∑

s∈Γ

e−t`(s) < +∞ for all t > 0 ,

then Γ is amenable. Notice that the functions e−t` are positive definite by a classical Schoen-
berg’s theorem and that they give rise to the Markovian semigroup Tta := e−t`a on GNS
space L2(λ(Γ)′′, τ) of the von Neumann algebra λ(Γ)′′ generated by the left regular represen-
tation endowed with its normalized trace. Hence the quadratic form of its generator E`[a] =∑

s∈Γ `(s)|a(s)|2 is a Dirichlet form whose spectrum coincides with {`(s) ∈ [0,+∞) : s ∈ Γ}.
Here we illustrate some results from [CS6].

Definition 5.4. (Spectral growth of Dirichlet forms) Let us consider now a von Neumann
algebra with separable predualM and a faithful, normal state ω ∈M∗,+ on it. Suppose that
(E ,F) is a Dirichlet form on L2(M, ω) having discrete spectrum σ(E ,F) = {λk ≥ 0 : k ∈ N}.
Let us define the spectral growth rate ω(E ,F) as follows

ω(E ,F) := lim sup
n∈N

n
√
mn , mn := ](Λn) , Λn := {k ∈ N : λk ∈ [n, n+ 1)} .

The Dirichlet form is said to have

• exponential growth if ω(E ,F) > 1;
• sub-exponential growth if ω(E ,F) ≤ 1.

Theorem 5.5. Let M be a von Neumann algebra with separable predual. If there exists a
Dirichlet form (E ,F) with sub-exponential growth ω(E ,F) ≤ 1, then M is amenable.

Corollary 5.6. LetM be a non amenable von Neumann algebra with separable predual. Then
any Dirichlet form (E ,F), with respect to any faithful, normal state ω ∈M∗,+, has exponential
growth rate ω(E ,F) > 1, i.e. there exists a sequence of eigenvalues having exponentially
growing distribution.

Example 5.7. Applying the theorem above to the Dirichlet form considered in Example 4.9,
we have an independent proof of the result of M. Brannan [Br] by which the von Neumann al-
gebras L∞(Cr(O

+
N), h) of the free orthogonal quantum groups O+

N in the cyclic representation
of the Haar state h on L2(Cr(O

+
N), h).

6. Dirichlet forms and differential calculus on C∗-algebras

In this section we focus the attention on a C∗-algebra with semifinite, faithful, lower semi-
continuous, positive trace (A, τ) and denoteM = L∞(A, τ) the von Neumann algebra acting
on the space L2(A, τ), generated by the GNS representation of (A, τ). Our goal is to show



14 FABIO CIPRIANI

that there exists a differential calculus on the C∗-algebra A underlying a Dirichlet form. A
pivotal role will be played by the following property. We refer to [CS1] for details.

Definition 6.1. (Regular Dirichlet forms) A Dirichlet form (F ,F) on L2(A, τ) is said to be
regular if B := A ∩ F is a form core, dense in the C∗-algebra A.

Notice that, even in the commutative setting, regularity was the key condition, introduced
by Beurling-Deny, to develop a rich potential theory in Dirichlet spaces over locally compact
spaces; regularity was also central in M. Fukushima work to associate (uniquely in a precise
sense) a symmetric Hunt-Markov process, on locally compact space, to a Dirichlet form.

From an algebraic point of view, the importance of regularity, both in the commutative and
in the noncommutative setting, is suggested by the following result, due to Beurling-Deny
[BeDe2] in the first case and to Davies-Lindsay [DL] in the second one. Here we provide an
alternative proof from [C5] emphasizing the role of the lower semicontinuity of the Dirichlet
form.

We remark that J.L. Sauvageot [S1] discovered that every dissipation on a C∗-algebra A
with trace is canonically represented by a closed derivation in a C∗-Hilbert A-bimodule. The
regularity assumption above, on which the development of the differential calculus associated
to a Dirichlet form is based, should be seen as a weakening of the Feller property for the
corresponding Markovian semigroup, i.e. the possibility to extend it from L2(A, τ) to a
strongly continuous, Markovian semigroup on the C∗-algebra A.

Lemma 6.2. (Dirichlet algebra) Let (F ,F) be a Dirichlet form on L2(A, τ). Then

• B := A ∩ F is a ∗-subalgebra of A, called Dirichlet algebra;
• Be :=M∩F is a weakly∗-dense ∗-subalgebra of M, called weak Dirichlet algebra.

Proof. By convexity, lower semicontinuity and Markovianity, for a = a∗ ∈ B, ‖a‖ = 1

E
[∫ 1

0

dt a ∧ t
]
≤
∫ 1

0

dt E [a ∧ t] ≤ E [a] .

Since a2

2
= a−

∫ 1

0
dt a∧ t, it results a2 ∈ B. By scaling, the same it is true for all a = a∗ ∈ B.

Hence, if b = b∗ , c = c∗ ∈ B, then (b+ c) = (b+ c)∗ , (b− c) = (b− c)∗ so that

bc+ cb = (b+ c)2 − b2 − c2 ∈ B b2 − c2 =
(b+ c)(b− c) + (b− c)(b+ c)

2
∈ B ,

(b+ ic)2 = (b2 − c2) + i(bc+ cb) ∈ B .
Decomposing a generic a ∈ B as a = a+a∗

2
+ ia−a

∗

2i
we conclude that a2 ∈ B.

If a, b ∈ B, considering the matrix

[
0 a
b 0

]
∈ M2(B) , and applying the above result to the

extension of the Dirichlet form E on M2(A), we obtain

[
ab 0
0 ba

]
=

[
0 a
b 0

]2

∈ M2(B) so

that ab ∈ B and B is an algebra. An analogous proof holds true for Be. The weakly∗ density
of Be inM follows from the weakly∗-continuity of the Markovian semigroup associated to the
Dirichlet form. �

In case the Dirichlet form is regular, the Dirichlet algebra B is a norm dense, involutive
sub-algebra of the C∗-algebra A. As a by-product of the differential calculus we are going to
associate to (E ,F), we will see that B retains some topological features of A: these algebras
have the same K-theory (see [C4]).
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6.1. Dirichlet forms and derivations on C∗-algebras. The structure of the Dirichlet
integral on a Euclidean space suggests that Dirichlet forms could be constructed through a
differential calculus on the C∗-algebra. Specifically, we will deal with the following one.

Definition 6.3. (Derivations on C∗-algebras) A derivation (B, ∂,H,J ) on (A, τ) is given by

• a norm dense ∗-subalgebra B ⊆ A ∩ L2(A, τ)
• a symmetric, Hilbert A-bimodule (H,J )

J : H → H anti-unitary J (aξb) = b∗J (ξ)a∗ a, b ∈ B , ξ ∈ H

• a linear, symmetric map ∂ : B → H satisfying

∂(a∗) = J (∂a) a ∈ B

and the Leibniz rule

∂(ab) = (∂a)b+ a(∂b) a, b ∈ B .

Example 6.4. Let (V, g) be a Riemannian manifold without boundary, A := C0(V ), B :=
C∞c (V ) and let H := L2(TCV ) be the Hilbert space of square integrable sections of the
complexified tangent bundle TCV := TV ⊗C acted on by continuous functions by pointwise
multiplication (here left and right actions coincide so that H is a mono-module). A derivation
∂ := ∇C is thus defined as the complexified gradient operator with involution given by
J (ξ ⊗ z) := ξ ⊗ z̄ for ξ ⊗ z ∈ TV ⊗ C.

In the following we will exploit the fact that a closed derivation (B, ∂,H,J ) on (A, τ) not
only satisfies the Leibniz rule, by definition, but also a chain rule. To properly state this fact,
consider, for a fixed a = a∗ ∈ A, the representations La and Ra of the algebra of continuous
functions C(sp(a)) on the spectrum sp(a), uniquely defined for f ∈ C(sp(a)) and ξ ∈ H by

La(f)ξ =

{
f(a)ξ if f(0) = 0

ξ if f ≡ 1
Ra(f)ξ =

{
ξf(a) if f(0) = 0

ξ if f ≡ 1 ,

and the representation La ⊗Ra of C(sp(a))⊗ C(sp(a)) = C(sp(a)× sp(a)).

For closed interval I ⊆ R and f ∈ C1(I), denote by f̃ ∈ C(I × I) its difference quotient

f̃(s, t) =

{
f(s)−f(t)

s−t if s 6= t

f ′(s) if s = t.

Proposition 6.5. (Chain rule for derivations) Let (D(∂), ∂,H,J ) be a norm closed deriva-
tion, densely defined on A. Then for a = a∗ ∈ D(∂), a closed interval sp(a) ⊆ I and
f ∈ C1(I) such that f(0) = 0, one has

f(a) ∈ D(∂) , ∂(f(a)) = (La ⊗Ra)(f̃) ∂(a) ,

which implies

‖∂(f(a))‖H ≤ ‖f ′‖C(I) · ‖∂(a)‖H .

In the present tracial case, the projection of an element a = a∗ ∈ A ∩ L2(A, τ), onto
the closed, convex subset 1M − L2(A, τ) ⊂ L2(A, τ), involved in the Markovian property of
Dirichlet forms, can be described by functional calculus a ∧ 1M = f(a) in terms of the unit
contraction f(t) := t ∧ 1 ∈ R defined for t ∈ R. Approximating the unit contraction by
C1-maps and using the chain rule, one obtains
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Theorem 6.6. (Dirichlet forms from derivations) Let (B, ∂,H,J ) be a derivation on (A, τ)
closable on L2(A, τ). Then a Dirichlet form is obtained as closure of the quadratic form (E ,B)

E [ξ] := ‖∂a‖2
H a ∈ B .

Hence derivations gives rise to Dirichlet forms analogously to the case where the gradient
operator provides the Dirichlet integral on a Riemannian manifold. As a first noncommutative
example of application of the the above result, we may consider the following

Example 6.7. (Noncommutative tori) This is a pivotal family of spaces since the appearance
of Noncommutative Geometry [Co]. Let T2

θ be the rotation C∗-algebra associated to the
parameter θ ∈ R. It is the universal C∗-algebra generated by two unitaries U and V , satisfying
the relation

V U = e2iπθUV .

For θ = 0 it is isomorphic to the commutative C∗-algebra C(T2) of continuous functions on
the 2-torus. If θ ∈ Q then T2

θ is isomorphic to the algebra of continuous sections of bundles
of C∗-algebras where fibers are full matrix algebras. If however θ ∈ R \ Q, then T2

θ, called
noncommutative torus, is a simple C∗-algebra with unique tracial state τ : T2

θ → C specified
by

τ(UnV m) = δn,0δm,0 n,m ∈ Z .
The standard space of the trace can be described as

L2(T2
θ, τ) = {

∑
n,m∈Z

αn,mU
nV m :

∑
n,m∈Z

|αn,m|2 < +∞}

where the cyclic vector representing the trace is the identity I. An orthonormal base is given
by {UnV m : (n,m) ∈ Z× Z} and the left and right actions by

U
( ∑
n,m∈Z

αn,mU
nV m

)
:=

∑
n,m∈Z

αn,mU
n+1V m

( ∑
n,m∈Z

αn,mU
nV m

)
V :=

∑
n,m∈Z

αn,mU
nV m+1 .

The (completely positive, unital), heat semigroup {Tt : t ≥ 0} on T2
θ is characterized by

Tt(U
nV m) = e−t(n

2+m2)UnV m n,m ∈ Z

and the same formula define its extension to L2(T2
θ, τ). The latter is τ -symmetric and the

associated regular Dirichlet form is given by

E
[ ∑
n,m∈Z

αn,mU
nV m

]
=
∑
n,m∈Z

(n2 +m2)|αn,m|2 .

The spectrum is independent upon θ and thus coincides with the spectrum of the ordinary
Laplacian on the torus T2. The derivation associated to E is the direct sum

∂(a) = ∂U(a)⊕ ∂V (a)

of the (partial) derivations ∂U and ∂V defined by

∂U(UnV m) = inUnV m , ∂V (UnV m) = imUnV m n,m ∈ Z .

The heat semigroup is clearly conservative, and the T2
θ–bimodule H0 associated with E , as in

Corollary 4.17, is a sub–bimodule of L2(T2
θ, τ)⊕ L2(T2

θ, τ).
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Example 6.8. (Clifford Dirichlet form of free fermion systems) The following one is, histor-
ically, the first example of noncommutative Dirichlet form, studied by L. Gross in Quantum
Field Theory [G1,2].
Let h be an infinite dimensional, separable, real Hilbert space and Cl(h) the complexification
of the Clifford algebra over h. It is a simple C∗–algebra with a unique trace state τ whose
associated von Neumann algebra being the hyperfinite type II1 factor.
By the Chevalley–Segal isomorphism, here denoted by D, L2(A, τ) can be canonically identi-
fied with (the complexification of) the antisymmetric Fock space Γ(h) over h. L. Gross [G1,2]
showed that the Second Quantization Γ(Ih) of the identity operator Ih on h is isomorphic
to the Number operator N = D−1Γ(Ih)D, which is the generator of a completely positive,
conservative, C0-semigroup over Cl(h). To describe the structure of N , let {ei : i ∈ N} be
an orthonormal base of h and let {Ai : i ∈ N} be the corresponding family of annihilation
operators on Γ(h). For each i ∈ N the operator Di := D−1AiD, defined on the domain

D(
√
N), is a densely defined, closed operator with values in L2(A, τ) and

N =
∑
i∈N

D∗iDi = D−1(
∑
i∈N

A∗iAi)D .

Moreover, D(
√
N) is a sub–algebra of Cl(h) and on it the following Leibniz rules hold true:

Di(ab) = Di(a))b+ γ(a)(Di(b)) .

Here γ is the extension to L2(A, τ) of the canonical involution of Cl(h) which is the unique
extension of the map v 7→ −v on h. This shows that, by considering on L2(A, τ) the GNS
right action of Cl(h) and the new left action given by γ, we obtain a closed derivation on
Cl(h) with values in L2(A, τ). The Dirichlet form then is given by the formula

E [a] = ||N1/2(a)||2H =
∑
i∈N

||Di(a)||2L2(A,τ) ,

where the tangent bimodule is a sub-bimodule of
⊕

i∈N L
2(A, τ) and the derivation is

⊕
i∈NDi.

We are now going to sketch the construction by which any regular Dirichlet form (E ,F)
on a C∗-algebra A with trace, gives rise to a differential calculus on A. The construction
relies on the Stinspring Theorem on the structure of completely positive maps and on the
regularity of Dirichlet forms.

Theorem 6.9. (Derivations from Dirichlet forms) Let (E ,F) be a Dirichlet form on L2(A, τ)
and B := A ∩ F its Dirichlet algebra. Then there exists a derivation (B, ∂,H,J ) such that

E [ξ] := ‖∂a‖2
H a ∈ B .

To acquaint about the proof of the result, let us describe the main steps:

• a sesquilinear from on B ⊗ B is defined by the sesquilinear form E

(c⊗ d| a⊗ b) :=
1

2

(
E(c, abd∗) + E(cdb∗, a)− E(db∗, c∗a)

)
;

• by the Stinspring representation of the resolvent on the von Neumann algebra

(I + εL)−1(a) = W ∗
ε πε(a)Wε a ∈M ,

• the sesquilinear form above is shown to be positive definite by the following identity

(c⊗ d| a⊗ b) = lim
ε→0

1

2
τ
(
d∗

L

I + εL
(c∗)ab+ d∗c∗

L

I + εL
(a)b− d∗ L

I + εL
(c∗a)b

)
= lim

ε→0

1

2ε
τ
(
d∗(Wεc− πε(c)Wε)

∗(Wεa− πε(a)Wε)b+ d∗c∗(I −W ∗
εWε)ab

)
;
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• denote by H0 the Hilbert space obtained from B ⊗ B by separation and completion
• and prove the bound ‖a⊗ b‖2

H0
≤ ‖b‖2

A · E [a] for a, b ∈ B
• a right A-module structure on H0 is obtained setting

(a⊗ b)c := a⊗ bc a, b, c ∈ B

• a left A-module structure on H0 is obtained setting

d(a⊗ b) := da⊗ b− d⊗ ab a, b, c, d ∈ B

• a derivation ∂0 : B → H0 is obtained setting

(∂0(a)|b⊗ c) :=
1

2
(E(a, bc) + E(b∗, ca∗)− E(b∗a, c)) a, b, c ∈ B

• and the following identity

E [a]− ‖∂0(a)‖2
H0

= lim
ε→0

1

2
τ
( L

I + εL
(a∗a)

)
allows to prove the result in the conservative case where Tt1M = 1M, for all t ≥ 0 and
the right hand side of the above identity vanishes identically.

To handle the general case, a long detour, based on the norm closability of the derivation ∂0,
is needed to handle the left hand side of the above identity.

Example 6.10. (Dirichlet forms and derivations on group C∗-algebras) Let us describe more
carefully the content of the structure theorem in a particularly interesting situation. Let G
be a locally compact, unimodular group with identity e ∈ G. Denote by λ, ρ : G→ B(L2(G))
the left, right regular representations and by C∗r(G) the reduced group C∗-algebra. A trace is
determined by τ(a) = a(e) for a ∈ Cc(G), its GNS space L2(A, τ) coincides with L2(G) and
the standard cone is the one of positive definite functions (see [Dix]).
For any continuous, negative definite function ` : G → [0,+∞), the function e−t` is positive
definite for any t > 0 (see [deH]). Since the pointwise product of positive definite functions is
positive definite too, we have that

(Tta)(t) = e−t`(g)a(g) a ∈ L2(G)

is a Markovian semigroup with generator determined by

(La)(g) = `(g)a(g) a ∈ Cc(G) .

and associated Dirichlet form given by

E`[a] =

∫
G

`(g)|a(g)|2 dg a ∈ L2(G) .

To construct the associated derivation, one uses the orthogonal representation π : G→ B(K)
and the 1-cocycle

c : G→ K c(gh) = c(g) + π(g)c(h) g, h ∈ G

representing the negative definite function as `(g) = ‖c(g)‖2
K. Thus a Hilbert C∗r(G)-bimodule

is set by L2(G,KC) ' L2(G) ⊗ KC acted on the left by λ ⊗ πC and on the right by id ⊗ ρ.
Using the cocycle identity, an easy computation allows to shows that

∂` : Cc(G)→ L2(G,KC) (∂`a)(g) = c(g)a(g) g ∈ G

defines a derivation which represent the Dirichlet as E`[a] = ‖∂`a‖2
L2(G,KC).
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Remark 6.11. Notice that the class of groups C∗-algebras C∗r(Γ) of countable, discrete groups
Γ, coincides with the class co-commutative compact quantum groups. Moreover, the Markov-
ian semigroups associated to negative definite functions are exactly the Lévy semigroups in
this subclass. In particular, one can describe the Schurmann triple in terms of the 1-cocycle
representing the negative type function (see [CFK] for the details). Notice also that when
Γ = Zd, the group C∗-algebra is isomorphic to the algebra of continuous functions on the
torus C∗r (Zd) ' C(Td). Moreover, if negative type function is given by

` : Zd → [0,+∞) `(z) := |z|2 ,

then the corresponding Dirichlet space and Markovian semigroup are equivalent, by Fourier
series, to the Dirichlet integral and heat semigroup on Tn, respectively.

6.2. Dirichlet forms and K-theory. Several consequences can be derived from the struc-
ture of regular Dirichlet forms in terms of derivations. On the topological side we have the
following ones (see [C4]).

Proposition 6.12. (K-theory of Dirichlet spaces) Let (E ,F) be a regular Dirichlet form on
a C∗-algebra with trace (A, τ). Then the following properties holds true:

• the form domain F is closed under Lipschiz functional calculus

a = a∗ ∈ F and f ∈ Lip0(R) ⇒ f(a) ∈ F and E [f(a)] ≤ ‖f‖2
Lip0(R) · E [a] ;

• the Dirichlet algebra and the C∗-algebra have equivalent K-groups: K∗(B) = K∗(A);
• if the trace τ is finite, the Dirichlet algebra B is a semisimple, involutive, Banach

algebra when endowed with the norm

‖a‖B := ‖a‖M +
√
E [a] a ∈ B ,

so that, in particular, it has a unique Banach algebra topology.

Corollary 6.13. The triple (A, τ,F) determines the quasi conformal class of the Dirichlet
form in the sense that two Dirichlet forms (E1,F), (E2,F) on L2(A, τ) with common domain
are comparable as follows

1

k
(E1[a] + ‖a‖2

2) ≤ E2[a] + ‖a‖2
2 ≤ k(E1[a] + ‖a‖2

2) a ∈ F

for some constant k > 0.

As projective modules over a C∗-algebra A can be described by projections in matrix
ampliations of A, the complete Markovianity of a Dirichlet form allows to introduce Dirichlet
structures on projective modules. Here are some consequences, in a commutative situation.

Proposition 6.14. (Dirichlet structures on vector bundles) Let (X,m) be compact Haudorff
space endowed with a finite, positive, Borel measure and let (E ,F) be a regular Dirichlet form
on L2(X,m). Then we have:

• any finite dimensional, locally trivial vector bundle E → X acquires a canonical
Dirichlet structure, i.e. a class of compatible atlases with transition matrices hav-
ing (finite energy) entries in B;
• the space of sections B(E,X) of the Dirichlet structure has a canonical Banach module

structure over B.
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6.3. Decomposition of derivations and Dirichlet forms. Since the derivations associ-
ated to regular Dirichlet forms take values in Hilbert bimodules over the the C∗-algebra A,
one has at disposal the tools of representation theory to study them. In this section we will
briefly describe the influence of decomposition theory (we refer to [CS2]).

Definition 6.15. Consider a derivation (B, ∂,H,J ) on A and the von Neumann algebra
LA−A(H) of operators commuting both with the left and right actions of A.

• T ∈ LA−A(H) is ∂-bounded if B 3 b 7→ T (∂b) ∈ H is bounded from A to H;

• a projection p ∈ Proj(LA−A(H)) is approximately ∂- bounded if increasing limit p =
limα pα of a net of ∂-bounded projections pα ∈ Proj(LA−A(H));

• equivalently, p ∈ Proj(LA−A(H)) is approximately ∂- bounded if the A-bimodule pH
splits as direct sum

⊕
n∈NHn and the derivation p ◦ ∂ decomposes as a direct sum⊕

n∈N ∂n of bounded derivations;

• a projection p ∈ Proj(LA−A(H)) is completely ∂-unbounded if 0 is the only ∂-bounded
projection smaller than p;

• a projection p ∈ Proj(LA−A(H)) is bounded, approximately bounded, completely un-
bounded if the identity 1H is a ∂-bounded, approximately ∂-bounded, completely ∂-
unbounded projection.

Theorem 6.16. (Decomposition of Derivations and Dirichlet forms) There exists a greatest
approximately ∂-bounded projection Pab ∈ Proj(LA−A(H)) such that any ∂-bounded operator
T ∈ LA−A(H) satisfies TPab = Pab.
Consequently, any derivation (B, ∂,H,J ) on A decomposes canonically as

∂ = ∂u ⊕ ∂ab : B → H = Hu ⊕Hab

where

• ∂u := (I − Pab) ◦ ∂, Hu := PuH is the completely unbounded part
• ∂ab := Pab ◦ ∂, Hab := PabH is the approximately bounded part.
• A Dirichlet form (E ,F) on a C∗-algebra with trace (A, τ), thus decomposes accordingly

E = Eu + Eab E∗[a] = ‖∂∗a‖2
∗ ∗ = u, ab , a ∈ B .

Let us compare below the decomposition just obtained with the one discovered by Beurling-
Deny, in the commutative situation.

Example 6.17. (Decompositions of Dirichlet forms on commutative C∗-algebras)
In the commutative situation (C0(X),m) of a locally compact, separable Hausdorff space
X endowed with a positive Borel measure m, Beurling-Deny [BD2] proved that a regular
Dirichlet form (E ,F) decomposes

E [a] = Ec[a] + Ej[a] + Ek[a] a ∈ B
in terms of the diffusive Ec, the jumping Ej and the killing Ek parts. The latter has the
representation

Ek[a] =

∫
X

k(dx) |a(x)|2

for a unique positive Radon measure k on X; the jumping part appears as

Ej[a] =

∫
X×X\∆X

j(dx, dy) |a(x)− a(y)|2
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for a unique positive Radon measure j on X ×X supported off the diagonal ∆X := {(x, x) ∈
X ×X : x ∈ X}; the continuous or diffusive part Ec is characterized by the following strong
local property:

Ec[a+ b] = Ec[a] + Ec[b]
for all b ∈ B constant in a neighborhood of the support of a ∈ B. One of the beautiful results
of the theory of Dirichlet forms on locally compact case is that each of the three parts of
the Beurling-Deny splitting has a precise probabilistic interpretation in terms of the Hunt
process associated to the Dirichlet form: strongly local Dirichlet forms give rise to diffusions,
i.e. processes with continuous sample paths with no killing inside X; the measure j indicates
the rate of jumps of the sample paths of the process and the measure k indicates the killing
probability of the sample paths of the process inside X (see [FOT Part II Chapter 4.5] for a
nice exposition of these and other results connecting the potential theory of Dirichlet forms
to properties of the associated process).

Using the tools of representation theory and in particular the notion of support of a rep-
resentation, the Beurling-Deny decomposition can be obtained from the description of the
Dirichlet form in terms of the derivation (B, ∂,H, J) such that E [a] = ‖∂a‖2

H for a ∈ B.
The tangent bimodule H of a Dirichlet form (E ,F) is a representation of the C∗-algebra
C0(X) ⊗ C0(X) ' C0(X × X) and thus can be canonically decomposed as the sum H =
Hc ⊕ Hj ⊕ Hk of the part Hc supported by the diagonal ∆X of X × X, the part Hj sup-
ported off the diagonal ∆X and the completely degenerate part Hk of the C0(X)-bimodule H.
The submodules Hc, Hj and Hk are images of suitable, orthogonal projections pc , pj , pk ∈
LC0(X)−C0(X)(H), commuting with the left and right actions of C0(X).
Then pc ◦ ∂, pj ◦ ∂, pk ◦ ∂ are symmetric derivations from B to H giving rise to three forms
that coincide with the three parts of the Beurling-Deny decomposition

Ec[a] = ‖pc(∂a)‖2
H , Ej[a] = ‖pj(∂a)‖2

H , Ek[a] = ‖pk(∂a)‖2
H , a ∈ B .

In addition, a more detailed description of the strongly local part can be obtained. In fact,
as the support of Hc is contained in the diagonal ∆X , the left and right actions of C0(X)
coincide and Hc is a C0(X)-mono-module, i.e. a representation of the C∗-algebra C0(X).
Since, by I.M. Gel’fand’s theory, the irreducible representations of C0(X) are in one to one
correspondence with the points of X, one may represent Hc as a direct integral

Hc =

∫ ⊕
X

µ(dx)Hx

of a measurable family of Hilbert spaces {Hx : x ∈ X} carrying the actions (a · ξ) := a(x)ξ
for a ∈ C0(X) and ξ ∈ Hx. The Hilbert space Hx have no other meaning that to represent
the multiplicity of the irreducible representation associated to x ∈ X by their dimension
dim(Hx). Correspondingly, the derivation is represented as a direct integral

∂ =

∫ ⊕
X

µ(dx) ∂x

of derivations ∂x : B → Hx satisfying the Leibniz rules

∂x(ab) = (∂xa)b(x) + a(x)(∂xb) a, b ∈ B , x ∈ X

and the strongly local part of the Dirichlet form appears as ”superposition”

Ec[a] =

∫
X

µ(dx) ‖∂xa‖2
Hx a ∈ B .
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On the other hand, comparing the Beurling-Deny decomposition with the decomposition
obtained in Theorem 6.16 above, one gets the identifications Eu = Ec of the completely
unbounded part with the diffusive part of E and the identification Eab = Ej + Ek of the
approximately bounded part with the sum of the jumping and killing parts.
Notice that, while the Beurling-Deny continuous/jumping/killing decomposition has a mean-
ing only in commutative settings, the decomposition completely unbounded/approximately
bounded holds true in a general framework.

7. Dirac Laplacian and positive curvature of Riemannian manifolds

In this section we will apply the completely unbounded/approximately bounded decom-
position theory outlined above to a narural class of Dirichlet form arising in Riemannian
Geometry (see [CS2]).
We will see how the Markovian property of the quadratic form of the Dirac Laplacian on
Riemannian manifold exactly measures the positivity of the curvature operator. The result
follows from the decomposition theory of Dirichlet forms outlined above and the specific
structure of the Clifford (finite dimensional) C∗-algebras of Euclidean spaces.

On a Riemannian manifold (V, g), the Euclidean tangent spaces (TxV, gx) gives rise to
complexified Clifford algebras with traces (Cl(TxV ), τx), for any x ∈ V . Gluing together this
vector spaces one may consider the complexified Clifford bundle Cl(V, g) and the Clifford
C∗-algebra C∗0(V, g) := C0(Cl(V, g)) of continuous sections of it, vanishing at infinity.
Coupling the traces on fibers with the integral with respect to the Riemannian measure
m, one obtains a trace τ =

∫
V
τxm(dx) on C∗0(V, g). Denoting by ∇ : C∞(Cl(V, g)) →

C∞(Cl(V, g) ⊗ T ∗V ) Levi-Civita connection of (V, g), we provide a alternative proof of the
following result by E.B. Davies and O.Rothaus [DR 1,2].

Theorem 7.1. The closure of the quadratic form given by the Bochner integral

EB[σ] :=

∫
V

|∇σ(x)|2 dx σ ∈ C∞(Cl(V, g))

is Dirichlet form on L2(C∗0(V ), τ).

The associated self-adjoint operator ∇∗∇ is called the Bochner or connection Laplacian.

To outline the proof of the result, consider that

• the Hilbert space L2(Cl(V, g)⊗ T ∗V ) is a C∗0(V, g)-bimodule

σ1 · (σ2 ⊗ ω) · σ3 := (σ1 · σ2 · σ3)⊗ ω

where the ”·” denote the Clifford product among sections of the Clifford bundle;
• a symmetry J : L2(Cl(V, g)⊗ T ∗V )→ L2(Cl(V, g)⊗ T ∗V ) is defined by

J (σ ⊗ ω) := σ∗ ⊗ ω̄

where σ∗ denotes the involution in the Clifford algebra and ω̄ the obvious involution
of complexified 1-forms;
• by definition, the Levi-Civita connection satisfies the metric property: for any smooth

vector field X

∇(fσ) = σ ⊗ df + f∇σ X(σ|σ) = (∇Xσ|σ) + (σ|∇Xσ) ;
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• since the contraction iX commutes with the actions of the Clifford algebra and ∇X =
iX ◦ ∇ we have

iX(∇(σ · σ)) = iX((∇σ) · σ + σ(∇σ)) ;

• as this is true for any vector field X we have

∇(σ · σ) = (∇σ) · σ + σ(∇σ)

from which the Leibniz property follows by polarization;

Hence, the covariant derivative of a Riemannian manifold, once considered on the Clifford
algebra, is a closed derivation defined on the Sobolev space H1(Cl(V, g)) of sections of the
Clifford bundle and taking values in the C∗0(V, g)-bimodule L2(Cl(V, g)⊗ T ∗V ). Since

EB[σ] = ‖∇σ‖2
L2(Cl(V,g)⊗T ∗V )

for all σ ∈ H1(Cl(V, g)), we have that the Bochner integral is a Dirichlet form with C∞(Cl(V, g))
as a form core.

Notice that, while the above result for the Bochner-Laplacian is independent upon the sign
of the curvature of (V, g), a parallel result for the Dirac-Laplacian reflects the sign of the
curvature, as we are going to inspect.
Recall that the Dirac operator of a Riemannian manifold (V, g) is defined (locally) as

(Dσ)(x) :=
n∑
i=1

ei(x) · (∇eiσ)(x) x ∈ V ,

where the vector fields {ei}ni=1 fthonormal base at x ∈ V . orm an or an orthonormal base (see
[LM] for the details of the construction). Under the canonical isomorphism of vector spaces
between the Clifford algebra Cl(V, g) and the exterior algebra Λ∗(V, g), the Dirac operator D
transforms into the operator d+ d∗ and the Dirac Laplacian D2 transform into the Hodge-de
Rham Laplacian ∆HdR = d∗ ◦ d + d ◦ d∗. The difference is that ∆HdR depends only upon
the differential structure of V , while D2 is constructed through the metric g. The Dirac
operator D is closable on L2(Cl(V, g)) and the domain of the closure is the first Sobolev
space H1(Cl(V, g)).

Theorem 7.2. The following properties are equivalent:

• the quadratic form of the Dirac Laplacian

ED[σ] := ‖Dσ‖2
L2(Cl(V,g)⊗T ∗V ) =

∫
V

|Dσ(x)|2 dx σ ∈ H1(Cl(V, g))

is a regular Dirichlet form on L2(C∗0(V, g), τ);

• the heat semigroup e−tD
2

is a Markovian, C0-semigroup on C∗0(V, g);

• the curvature operator of (V, g) is nonnegative: R̂ ≥ 0.

Example 7.3. On a compact, connected, orientable surface Σ, there exists a metric g such
that ED is a Dirichlet form if and only if Σ is homeomorphic to the sphere S2 or the torus T 2.

To outline the proof of the theorem, let us start to recall the basic ingredient. The curvature
endomorphisms Rx(v1, v2) : TxV → TxV

Rx(v1, v2)v := −(∇v1∇v2v −∇v2∇v1v −∇[v1,v2]v)(x) v, v1, v2 ∈ C∞c (TV ), x ∈ V

defines the curvature tensor Rx ∈
⊗4 T ∗xV

Rx(v1, v2, v3, v4) = (Rx(v1, v2)v3|v4)TxV v1, v2.v3, v4 ∈ C∞c (TV ), x ∈ V
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and the curvature operators R̂x :
∧2
x V →

∧2
x V

(R̂xv1 ∧ v2|v3 ∧ v4)∧2
x V

= Rx(v1, v2, v3, v4) v1, v2.v3, v4 ∈ C∞c (TV ), x ∈ V .

The curvatures identities, excluding the Bianchi’s ones, implies that R̂x is symmetric and
thus self-adjoint when extended on the complexification of

∧2
x.

The proof uses Bochner Identity D2 = ∆B + 1
4
ΘR in terms of quadratic forms

ED = EB +
1

4
QR , QR[σ] =

∫
V

QR(x)[σx] dx

where the curvature part can be written

QR(x)[σx] =

n(n−1)/2∑
α=1

µα‖[ηα(x), σx]‖2
2

in terms of a basis of orthonormal eigenvectors {ηα(x) : α = 1, . . . , n(n − 1)/2} ⊂
∧2
x of R̂x

corresponding to the eigenvalues {µα : α = 1, . . . , n(n− 1)/2}.
As commutators are bounded derivations, if R̂ ≥ 0 then all eigenvalues are nonnegative
µα ≥ 0 and QR is a (superposition) of Dirichlet forms. Moreover, as EB is a Dirichlet form by
the result of Davies-Rothaus, then ED results, by the Bochner Identity, as a (superposition
of) Dirichlet forms.

In the opposite direction, the strategy is in two moves: the first is prove that, given a Euclidean
space E with orthonormal base {ei}n=dimE

i=1 and a symmetric operator T :
∧2(E)→

∧2(E), a
form on L2(Cl(E), τ) of type

QT (x)[ξ] =
∑

1≤i<j≤n

∑
1≤k<l≤n

〈ek ∧ el|T (ei ∧ ej)〉〈[ek · el, ξ]|[ei · ej, ξ]〉

is a Dirichlet form if and only if (ξ|Tξ)∧2(E) ≥ 0 for all ξ ∈
∧2(E). This part uses again

the correspondence Dirichlet form/derivations and the ideal structure of finite dimensional
Clifford algebras; in the second part one has to disentangle the role of connection and cur-
vature in the left hand side of the Bochner identity ED = EB + 1

4
QR and prove that if ED is

a Dirichlet form a fortiori QR has to be a Dirichlet form too. The conclusion of the proof
uses repeatedly the above completely unbounded/approximately bounded decomposition to
realize that the approximately bounded part of the quadratic form of the Dirac operator is
proportional to the curvature term of the Bochner Identity (ED)j = 1

4
QR so that QR is, a

fortiori, a Dirichlet form and then the curvature operator has to be nonnegative R̂ ≥ 0.

Corollary 7.4. If the curvature operator of a Riemannian manifold V is nonnegative R̂ ≥ 0,
then the space of harmonic forms has the structure of a finite dimensional C∗-algebra, hence
a finite sum of full matrix algebras.
In particular, the sum of all Betti numbers b0(V ) + · · ·+ bn(V ) is a sum of squares of natural
numbers.

8. Dirichlet forms in Free Probability

In this section we describe aspects of noncommutative potential theory appearing in Free
Probability Theory discovered by Dan Virgil Voiculescu (see [V 1,2,3]).
Let (M, τ) be a noncommutative probability space, i.e. a von Neumann algebra endowed
with a faithful, normal, finite and normalized trace.
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Let us fix a unital ∗-subalgebra 1 ∈ B ⊂ M and a finite set X := {X1 , · · · , Xn} ⊂ M of
noncommutative random variables, i.e. self-adjoint elements of M , algebraically free with
respect to B.
Let us consider the ∗-subalgebra B[X] ⊂M generated by X and B (regarded as the algebra
of noncommutative polynomials in the variables X with coefficients in the algebra B) and
the von Neumann subalgebra W ⊂M generated by B[X].

Let HS(L2(W, τ)) ' L2(W, τ) ⊗ L2(W, τ) be the Hilbert W -bimodule of Hilbert-Schmidt
operators on L2(W, τ) and 1⊗ 1 ∈ HS(L2(W, τ)) the rank one projection onto the multiples
of the unit 1 ∈M ⊂ L2(M, τ).

Within this franmework, D.V. Voiculescu introduced a natural differential calculus and an
associated Dirichlet form.

Theorem 8.1. There exist unique derivations ∂Xi : B[X]→ HS(L2(W, τ)) such that

• ∂XiXj = δij1⊗ 1 , i, j = 1 , · · · , n;
• ∂Xib = 0 i = 1 , · · · , n, b ∈ B .

Under the assumption 1⊗ 1 ∈ dom (∂∗Xi) for all i = 1 , · · · , n, it follows that

• (∂Xi , B[X]) is densely defined and closable in L2(W, τ) for all i = 1 , · · · , n,
• the closure of the densely defined quadratic form

EX [a] :=
n∑
i=1

‖∂Xia‖2
HS a ∈ FX := B[X]

is a Dirichlet form on L2(W, τ).

Under the same assumption of the previous result, Voiculescu defined two relevant notions
in Free Probability.

Definition 8.2. Under the assumption 1⊗1 ∈ dom (∂∗Xi) i = 1 , · · · , n, the Noncommutative
Hilbert Transform of X with respect to B is defined as

J (X : B) :=
( n∑
i=1

∂∗Xi∂Xi

)
(X1 + · · ·+Xn) ∈ L2(W, τ)

and the Relative Free Fisher information of X with respect to B is defined as

Φ∗(X : B) := ‖J (X : B)‖2 .

In the commutative case where M = L∞(R,m), B = C1 is the subalgebra of constant
functions and the random variable X ∈M has distribution µX , one has that W = L∞(R, µX),
B[X] is the algebra of polynomials on R and the derivation ∂Xf coincides with the difference
quotient. In case p := dµX

dm
∈ L3(R,m), then J (X : B) is the usual Hilbert transform

Hp(t) := p.v.
1

π

∫
R

p(s)

t− s
ds .

It has been proved by Ph. Biane [Bi] that the Hessian of the Free Fischer information coincides
with the Dirichlet form EX on the domain where the Free Fischer information if finite.

Since the derivations ∂Xi i = 1, · · · , n annihilate B, the kernel of the Voiculescu’s Dirichlet
form introduced above, contains B and its spectrum has zero as eigenvalue. Moreover
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Theorem 8.3. A Free Poincaré inequality holds true for some c > 0

c‖Y − τ(Y )‖2
2 ≤ EX [Y ] Y ∈ FX :=

n⋂
i=1

dom (∂Xi)

or, equivalently, the spectrum of the Dirichlet form (EX ,FX) is contained in {0}∪ [c,+∞), if
and only if the random variable X is centered, it has unital covariance and it has semicircular
distribution.

A nice application has been derived from the results above, by Y. Dabrowski [Da]

Theorem 8.4. If the free Fisher information is finite Φ∗(X : C) < +∞ then W is a factor.

To sketch the proof consider that a consequence of the assumption is that the Xj are diffuse
operators. If Z ∈ W ∩W ′ is also in the domain of the Dirichlet form, Z ∈ FX , then

0 = ∂Xi([Z,Xj]) = [∂Xi(Z), Xj] i 6= j .

Thus each ∂Xi(Z) ∈ HS(L2(W, τ)) is a compact operator commuting with a diffuse operator
Xj and then vanishes ∂Xi(Z) = 0. The Free Poincaré inequality allows to conclude that Z
is a multiple of the identity. A standard resolvent regularization allows to remove the extra
assumption Z ∈ FX .

9. L2-rigidity in von Neumann algebras and Markovian semigroups

In the framework of Sorin Popa deformation/rigidity theory of inclusions of von Neumann
algebras, a fruitful approach has been undertaken by J. Peterson [Pe 1,2] in terms of Mar-
kovian semigroups and their (relative) continuity properties.

Definition 9.1. (L2-rigid inclusions) Let N ⊂ M be an inclusion of finite von Neumann
algebras and τ a fixed normal, faithful trace on M .

• An L2-deformation of N is a Markovian semigroup {Tt : t > 0} on L2(M, τ);
• an inclusion B ⊂ N is said to be L2-rigid if any L2-deformation for N converges

uniformly on the unit ball of B

lim
t→0+

sup
‖b‖B=1

‖b− Ttb‖2 = 0 .

Example 9.2. Let Λ ⊂ Γ be countable discrete groups and L(Λ) ⊂ L(Γ) the inclusion
of the corresponding (left) von Neumann algebras. We have seen in Example 6.10 that a
function ` : Γ→ [0,+∞) of negative type gives rise to a corresponding Markovian semigroup
Tt : l2(Γ) → l2(Γ), by the multiplication operators Tta = e−t`a. Then {Tt : t > 0} is an
L2-deformation of L(Λ) if and only if ` is inner, i.e.

`(t) = ‖ξ − π(t)ξ‖2
K t ∈ Γ

for some orthogonal representation π : Γ→ B(K) and a unit vector ξ ∈ K.

Several interesting rigidity results may be derived in [Pe 1,2] by the construction of deriva-
tions in suitable bimodules.

Theorem 9.3. Let N be a finite von Neumann algebras with normal, finite, faithful trace τ .

• if B ⊂ N is a subalgebra with no non-zero amenable summands then the inclusion
B′ ∩N is L2-rigid;
• if N is a non-amenable II1 factor which is non-prime or has property Γ, then N is
L2-rigid;
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• (Ozawa Theorem) if a countable discrete group Γ has a proper cocycle c : Γ →
(`(Γ))⊕∞, then L(Γ) is solid, i.e. B′ ∩ L(Γ) is amenable for any diffuse subalgebra
B ⊂ L(Γ).
Last result applies, in particular, to free group factors Γ = Fn , 2 ≤ n ≤ +∞.

10. Dirac operator and Fredholm module of Dirichlet spaces

On a regular Dirichlet space (E ,F) on a C∗-algebra with trace (A, τ), there exists a natural
Dirac operator D that identifies, by its commutator properties with the actions of elements of
A, two sub-algebras of M: the Lipschiz algebra and the algebra of finite energy multipliers.
Both of them can be equivalently described in terms of the carré du champ or energy distri-
butions of (E ,F). We will show how they gives rise to a spectral triple and to a Fredholm
module. These constructions have been applied to fractals in [CS3], [CGIS2] and to compact
quantum groups in [CFK]. Finer aspects may found in [CS4]. See also the recent [Ri2] where
the relationships between Dirichlet forms and corresponding Lipschiz seminorms as well as
between Dirac operators, quotient energy seminorms and resistance distances is investigated,
in the finite dimensional situations.

10.1. Carré du champ. One of the main subject of potential theory of regular Dirichlet
spaces (E ,F) on C∗-algebras with trace (A, τ), is the following class of functionals. Here we
adopt a definition based on the derivation associated to the Dirichlet form (compare with the
classical one as in[LJ]).

Definition 10.1. (Carré du champ) The carré du champ of a ∈ F is the positive functional
Γ[a] ∈ A∗+

Γ[a] : A→ C 〈Γ[a], b〉 := (∂a|(∂a)b)H b ∈ A
defined using the derivation (B, ∂,H,J ) representing (E ,F). It easy to see that

〈Γ[a], b〉 :=
1

2
{E(ab∗|a) + E(a|ab)− E(a∗a|b)} a, b ∈ B .

In particular, E [a] = 〈Γ[a], 1A∗∗〉 for all a ∈ F .

When E [a] represents the total energy of a system in a configuration a ∈ F , then Γ[a] may
be interpreted as the energy distribution.

Example 10.2. In case of the Dirichlet integral on Rn, the carré du champ are absolutely
continuous with respect to the Lebesgue measure m and reduces to

Γ[a] = |∇a|2 ·m a ∈ H1(Rn) .

Example 10.3. Consider a continuous, negative definite function ` : G → [0,+∞) on a
locally compact, unimodular group and the associated Dirichlet form

E`[a] =

∫
G

`(g)|a(g)|2 dg a ∈ L2(G) .

The carré du champ can be explicitly computed

〈Γ[a], b〉 =

∫
G

dg

∫
G

dh γ`(g, h)a(g)a(h)b(h−1g)

in terms of the energy kernel γ` given by

γ`(g, h) :=
1

2
{`(g) + `(h)− `(h−1g)} = (c(g)|c(h))H`
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or through the 1-cocycle (π`, H`, c) associated to the negative type function. The 1-cocycle
c : G → H` is an isometric embedding of the metric space (G, d√`) with metric d√`(s, t) :=√
`(s−1t) into the real Hilbert space H`

‖c(s)− c(t)‖H` =
√
`(s−1t) = d√`(s, t) s, t ∈ G .

The energy kernel can thus be written

γ`(g, h) =
1

2
{d√`(g, e)

2 + d√`(h, e)
2 − d√`(g, h)2} h, g ∈ G

and interpreted as deviation from orthogonality. If the negative type function gives rise to a
metric (g, h) 7→ d`(g, h) := `(h−1g) on G, then the energy kernel γ` is the Gromov product in
the metric space (G, d`) based on the identity e ∈ G

γ`(g, h) = (g|h)e :=
1

2
{d`(g, e) + d`(h, e)− d`(g, h)} g, h ∈ G .

In applications the trace τ , finite or not, may represent the volume distribution of a system.
In general the energy distribution Γ[a] is not comparable with the volume distribution, as it
happens for example on fractals.

In these lectures the carré du camp of a Dirichlet space will be important to discuss its metric
and conformal properties.

10.2. Dirac operator on the Lipschiz algebra. Let (E ,F) be a regular Dirichlet form on
(A, τ), (F , ∂,H,J ) its differential square root and (F∗, ∂∗,H,J ) its Hilbert space adjoint.
As (B, ∂,H,J ) is a derivation on A, it is justified to refer to (F∗, ∂∗,H,J ) as the divergence
of (E ,F) .

Definition 10.4. (Dirac operator) The Dirac operator (D,HD) of the Dirichlet space is the
densely defined, self-adjoint operator acting on HD := L2(A, τ)⊕H given by

D :=

(
0 ∂∗

∂ 0

)
dom(D) := F ⊕ F∗ ⊆ HD

or more explicitly

D

(
a
ξ

)
=

(
0 ∂∗

∂ 0

)(
a
ξ

)
=

(
∂∗ξ
∂a

)
,

(
a
ξ

)
∈ F ⊕ F∗ .

By definition, the Dirac operator anti-commutes with involution γ :=

(
−I 0
0 I

)
:

Dγ + γD = 0 .

By the Spectral Theorem, the operators ∂∗∂ and ∂∂∗ are self-adjoint operators on the
Hilbert spaces L2(A, τ) and H, respectively, which are unitarely equivalent one each other
on the orthogonal complement of their kernels. The Dirac operator of a Dirichlet space is a
differential square root of the generator of the Markovian semigroup in the sense that

D2 =

(
∂∗∂ 0
0 ∂∂∗

)
.

We summarize in the lemma below some obvious spectral propertiy of the Dirac operator.
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Lemma 10.5. The kernel of the Dirac operator is given by ker (D) = ker (∂)⊕ ker (∂∗) and
its dimension by dimker (D) = dim ker (∂) + dim ker (∂∗) = dimL2(A, τ). Away from zero,
the spectrum of the Dirac operator (D, dom(D)) on the Hilbert space L2(A, τ) ⊕ H is given
by

σ(D) \ {0} = [(σ(
√

∆) \ {0})] ∪ [−(σ(
√

∆) \ {0})] .

Moreover, if the spectrum σ(∆) of the generator is discrete then, away from zero, the spec-
trum σ(D) of the Dirac operator is discrete too. In particular, if λ ∈ σ(∆) is a non van-
ishing eigenvalue of the generator, with associated normalized eigenvector aλ ∈ dom (∆),

then ±
√
λ ∈ σ(D) are the corresponding non vanishing eigenvalues of D and the associated

normalized eigenvectors are given by aλ ⊕ (±λ− 1
2∂aλ) ∈ dom (D).

In A. Connes’ Nonncommutative Geometry [Co], a primary rôle of a Dirac operator is to
single out, through its interplay with the action of elements of A, a subalgebra to gives a
Spectral Triple from which topological and geometric properties can be derived. We are
going to show that for the Dirac operator of a Dirichlet space, this algebra can be naturally
described in terms of the carré du champ, i.e. through energy distributions.

Proposition 10.6. (Bounded commutators and Lipschiz seminorms) Consider L2(A, τ), H
and HD as left A-modules. For a ∈ B, the following properties are equivalent

• [D, a] is bounded on HD;
• [∂, a] is bounded from L2(A, τ) to H;
• Γ[a] is absolutely continuous w.r.t. τ with bounded Radon-Nikodym derivative

ha ∈ L∞(A, τ) 〈Γ[a], b〉 = τ(hab) b ∈ L1(A, τ).

In particular ‖[D, a]‖HD→HD = ‖[∂, a]‖L2→H = ‖ha‖M for all a satisfying the above conditions.

• For a ∈ B ∩ domM(L), the above properties are also equivalent to a∗a ∈ domM(L).

Definition 10.7. (Lipschiz algebra of a Dirichlet space) The ∗-subalgebra L(F) ⊆ B of ele-
ments satisfying the first three properties above, is called the Lipschiz algebra of the Dirichlet
space. It will be assumed to be seminormed by

L(F) 3 a 7→ ‖[D, a]‖HD→HD = ‖[∂, a]‖L2→H = ‖ha‖M .

In particular, L(F) ∩ domM(L) is an involutive subalgebra contained in L(F).

Example 10.8. In case of the Dirichlet integral D on Rn, the derivation ∂ coincides with the
gradient operator ∇ and then the commutator [∂, a] multiplies a function b by the gradient
∇a, [∂, a]b = (∇a)b. Its operator norm ‖[∂, a]‖∞ thus coincides with the uniform norm of the
gradient ‖|∇a|‖∞ and then the Dirichlet algebra L(H1(Rn)) is given by the algebra Lip(Rn)
of Lipschiz functions of the Euclidean metric.
In case of the Bochner integral of a Riemannian manifold (V, g), the derivation ∂ coincides
with the exterior differential d, the commutator [∂, σ] is the pointwise Clifford left multiplica-
tion by dσ so that the Dirichlet algebra coincides with the algebra of Lipschiz sections, with
respect to the metric g, of the Clifford algebra.
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In the first case, the metric induced by the Dirac operator through the Connes’ formula

dD(x, y) : = sup{|a(x)− a(y)| : ‖[D, a]‖HD→HD ≤ 1}
= sup{|a(x)− a(y)| : a ∈ L(F), ‖[∂, a]‖L2→HD ≤ 1}
= sup{|a(x)− a(y)| : a ∈ L(F), ‖|∇|‖∞ ≤ 1}
= |x− y|Rn x, y ∈ Rn

(10.1)

is exactly the Euclidean metric on Rn. In the second case, the Connes’ formula provides the
original metric g of the Riemannian manifold.

Define the phase FD := D|D|−1 of the Dirac operator to be zero on ker(D).

Theorem 10.9. (Spectral triple and Fredholm module) Assume the spectrum of (E ,F) on
L2(A, τ) to be discrete. Then (L(F), D,HD) is a spectral triple in the sense

• [D, a] is bounded on HD for all a ∈ L(F)
• sp(D) is discrete away from zero.

Moreover, setting F := FD + Pker(D), then (L(F), F,HD) is a Fredholm module

• F = F ∗ , F 2 = I
• [F, a] is compact on HD for all a ∈ L(F).

The difference with Connes definition of spectral triple lies in the fact that the Dirac
operator of a Dirichlet space with discrete spectrum, has discrete spectrum away from zero
and zero is an eigenvalue of infinite degeneracy if the algebra A is infinite dimensional.

Example 10.10. (Ground State representations of Schrödinger operators) Let us consider
a lower semibounded Hamiltonian H := −∆ + V with potential V , on the space L2(Rn,m).
Assume the spectrum to be discrete sp(H) = {E0 < E1 < . . . } and consider the ground
state ψ0 ∈ L2(Rn,m) with lowest eigenvalue E0: Hψ0 = E0ψ0 and ground state measure
ν0 := |ψ0|2 ·m. As the energy form EH [a] := ‖∇a‖2

L2(Rn,Rn) + (a|V a)L2(Rn) of the Hamiltonian

H, on its domain satisfies EH [|a|] = EH [a], we have that the ground state is strictly positive
φ0 > 0. Using the ground state transformation

U : L2(Rn,m)→ L2(Rn, |ψ0|2 ·m) U(f) := ψ−1
0 f , f ∈ L2(Rn,m) ,

the ground state representation of H is defined as Hφ0 := U(H − E0)U−1. Since the
Schrödinger semigroup e−tH is positivity preserving on L2(Rn,m) and e−tHψ0 = e−tE0ψ0, then
the semigroup e−tHψ0 is positive preserving on L2(Rn, ν0) and leaves invariant e−tHψ01 = 1
the constant function 1. It is thus a Markovian semigroup on the standard form L2(Rn, ν0) of
the von Neumann algebra L∞(Rn, ν0) = L∞(Rn,m) with respect to the cyclic and separating
vector represented by the constant function 1. More explicitly, the quadratic form of Hψ0 is,
on its natural domain Fψ0 , a Dirichlet form on L2(Rn, ν0)

Eψ0 [a] = ‖
√
Hψ0a‖2

2 =

∫
Rn
|∇a|2 · dν0 a ∈ Fψ0

which is regular with respect to the commutative, unital, nonseparable C∗-algebra Cb(Rn) of
all bounded continuous functions on the Euclidean space. The associated derivation, taking
values in the Cb(Rn)-monomodule L2(Rn, ν0) ⊗ Cn of vector fields square integrable with
respect to the ground state measure, is simply given by the gradient operator

∂ : Fψ0 → L2(Rn, ν0)⊗ Cn ∂a = ∇a .
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The Lipschiz algebra of the Dirichlet space thus coincides with the Lipschiz algebra of the
Euclidean space L(Fψ0) = L(Rn) and the distance induced on Rn coincides with Euclidean
distance. Thus, as far as the distance function associated to the spectral triple is concerned,
we are in the same situation we would have reached if we would have considered the Dirichlet
integral D of Rn. However, the fact that the latter is referred to the C∗-algebra C0(Rn)
of continuous functions vanishing at infinity and the presently constructed spectral triple is
referred on Cb(Rn) marks a difference at a topological level. To be more specific, consider
the potential of an harmonic oscillator V (x) := |x|2. Then spectral dimension of the triple
(Cb(Rn)∩Lip(Rn), Dψ0 , L

2(Rn, ν0)⊕L2(Rn, ν0)) is 2n, twice the spectral dimension n obtained
using the Dirichlet integral. As Cb(Rn) is the algebra of continuous function of the Stone-
Cech compactification βRn of Rn, we conclude that our spectral triple assigns dimension 2n
to βRn.

In situations where the Lipschiz algebra L(F) is not dense in the C∗-algebra A, for example,
on post critically finite fractals and for natural classes of Dirichlet structures on them, one
may be interested in getting directly a Fredholm module bypassing the spectral triple.

10.3. Fredholm module of a Dirichlet space. To construct the Fredholm module associ-
ated to a Dirichlet form, we consider the image of the associated derivation and the symmetry
with respect to it.

Definition 10.11. (Phase operator of a Dirichlet form) Let us consider a regular Dirichlet
form (E ,F) on L2(A, τ). Let ∂ : B → H be the associated derivation, defined on the Dirichlet
algebra B = A ∩ F with values in the symmetric Hilbert module (H,J ).
Let P ∈ Proj (H) be the projection onto the closure Im∂ of the range of the derivation

PH := Im ∂

and call F := P − P⊥ : H → H the phase operator associated to the regular Dirichlet space.

Theorem 10.12. (Fredholm module of a Dirichlet form) Let (E ,F) be a regular Dirichlet
form on L2(A, τ) such that

i) the spectrum sp(E ,F) = {λk ≥ 0 : k = 1, · · · ,+∞} is discrete

ii) the (normalized) eigenvectors {ak : k = 1, · · · ,+∞} belongs to the C∗-algebra A

iii) the Green function of (E ,F), defined as G :=
∑∞

k=1 λ
−1
k a∗kak, belongs to A.

Then (F,H) is a Fredholm module over A in the sense of [At] and a densely, 2-summable
Fredholm module over A in the sense of [Co Chapter IV 1.γ Definition 8].

Proof. Clearly F ∗ = F , F 2 = I. Since, by the regularity of the Dirichlet form, the Dirichlet
algebra B is involutive and dense in A, to prove that [F, a] is compact for all a ∈ A, we may
assume that a = a∗ ∈ B. Consider the identity

(10.2) [P, a] = PaP⊥ − P⊥aP
from which we have

(10.3) |[P, a]|2 = |PaP⊥|2 + |P⊥aP |2

and then

(10.4) ‖[F, a]‖2
L2 = 4‖[P, a]‖2

L2 = 8‖P⊥aP‖2
L2 .
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By definition of P , the identities P ◦ ∂ = ∂ and P⊥ ◦ ∂ = 0 hold true. Using the Leibniz rule
we have

(10.5) P⊥aP (∂b) = P⊥(a∂b) = P⊥(∂(ab)− (∂a)b) = −P⊥((∂a)b) b ∈ B
so that

(10.6) ‖P⊥aP (∂b)‖ = ‖P⊥((∂a)b)‖ ≤ ‖(∂a)b‖ .
Denote k0 := inf{k ∈ N : λk > 0}. By assumption ii), the eigenvectors belong to the Dirichlet

algebra B so that the vectors ξk := λ
−1/2
k ∂ak, k ≥ k0, form an orthonormal complete system

in PH. We may thus bound the Hilbert-Schmidt norm of the commutator [F, a] as follows

‖[F, a]‖2
L2 = 8‖P⊥aP‖2

L2 = 8
∞∑

k=k0

λ−1
k ‖P

⊥aP (∂ak)‖2
H ≤ 8

∞∑
k=k0

λ−1
k ‖ak∂a‖

2
H

= 8
∞∑

k=k0

λ−1
k (ak∂a|ak∂a) = 8(

∞∑
k=k0

λ−1
k a∗kak∂a|∂a) = 8(G∂a|∂a)

= 8(J ∂a|J (G∂a)) = 8(∂(a∗)|(∂(a∗))G∗) = 8(∂a|(∂a)G)

= 8〈Γ[a], G〉
≤ 8 · ‖G‖A · E [a]

(10.7)

which is finite by assumption iii). �

The above result applies (see [CS3]) to the class of Dirichlet forms constructed by J. Kigami
[Ki] on self-similar fractal spaces, associated to regular harmonic structures (a specific example
will be discussed in Section 12 below).

Remark 10.13. The above result indicates a direct connection between the summability prop-
erties of the Fredholm module and two of the main objects of potential theory, namely, the
Dirichlet form E and the Green function G.

11. Potential Theory in Dirichlet spaces

Finer properties of the differential calculus underlying a Dirichlet spaces rely on properties
of the basic objects of the Potential Theory of Dirichlet forms. One of them, the carré du
champ, has been already introduced in the previous section. In this section we introduce the
others, finite energy states, potentials, multipliers, and illustrate some basic relations among
them (see [CS4]).

11.1. Potentials and finite-energy states. Consider a regular Dirichlet space (E ,F) with

its Hilbertian graph norm ‖a‖F :=
√
E [a] + ‖a‖2

L2(A,τ).

Definition 11.1. (Potentials, Finite Energy Functionals)

• p ∈ F is called a potential if

(p|a)F ≥ 0 a ∈ F+ := F ∩ L2
+(A, τ)

Denote by P ⊂ L2(A, τ) the closed convex cone of potentials.
• ω ∈ A∗+ has finite energy if for some cω ≥ 0

|ω(a)| ≤ cω · ‖a‖F a ∈ F .
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P is the polar cone of L2
+(A, τ) with respect to the energy scalar product. Finite energy

functionals are not necessarily continuous with respect to the trace.

Example 11.2. In a d-dimensional Riemannian manifold (V, g), the volume measure µW of
a (d− 1)-dimensional compact submanifold W ⊂ V has finite energy.

Potentials and finite energy functionals are in one to one correspondence.

Theorem 11.3. Let (E ,F) be a regular Dirichlet form on (A, τ). Then we have

• potentials are positive: P ⊂ L2
+(A, τ);

• for any fixed potential p ∈ P, the functional

ωp : A→ C ωp(a) := (p|a)F a ∈ F

has finite energy;
• given a finite energy functional ω ∈ A∗+, there exists a unique potential representing it

G(ω) ∈ P ω(a) = (G(ω)|a)F a ∈ F .

Example 11.4. If h ∈ L2
+(A, τ) ∩ L1(A, τ) then the functional ωh ∈ A∗+, defined by

ωh(a) := τ(ha) a ∈ A ,

is a finite energy functional whose potential is given by G(ωh) = (I + L)−1h.

Example 11.5. Let E` be the Dirichlet form on A := C∗r (Γ), associated to a negative definite
function ` on a countable, discrete group Γ. Then ω ∈ A∗+ is a finite energy functional if and
only if ∑

t∈Γ

|ω(δs)|2

1 + `(s)
< +∞ with potential given by G(ω)(s) =

ω(δs)

1 + `(s)
s ∈ Γ .

Since ϕ` := (1+
√
`)−1 is a positive definite, normalized function, there exists a state ω` ∈ A∗+

such that ϕ`(s) = ω`(δs) for all s ∈ Γ. Thus ω has finite energy if and only if∑
s∈Γ

|ω(δs)|2

(1 +
√
`(s))2

=
∑
s∈Γ

|ϕ`(s) · ϕω(s)|2 < +∞ .

Notice that ϕ` · ϕω is a coefficient of a square integrable, sub-representation of the product
πω` ⊗ πω of the representations (π`,H`, ξ`) and (πω,Hω, ξω) associated to ω` and ω. Hence
if ω has finite-energy, the representation πω` ⊗ πω and the left regular representation λΓ are
not disjoint. Moreover, as ω has finite energy simultaneously with respect to E` and Eλ−2` for
λ > 0, the family of normalized, positive definite functions

ϕλ(s) =
λ

λ+
√
`(s)
· ϕω(s) s ∈ Γ ,

generates a family of cyclic representations {πλ : λ > 0} contained in λΓ, deforming the cyclic
representation πω associated to the finite energy state ω to the left regular representation λΓ

lim
λ→0+

ϕλ = δe , lim
λ→+∞

ϕλ = ϕω ,

so that the representation πω is weakly contained in the regular representation λΓ: πω � λΓ.

The boundedness of the potential G(ω) of a finite energy functional ω is a regularity prop-
erty that allows to promote the embedding F → L1(A, ω) to an embedding F → L2(A, ω).
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Theorem 11.6. (Deny’s embedding) Let ω ∈ A∗+ be a finite energy functional with bounded
potential

G(ω) ∈ P ∩ L∞(A, τ) .

Then the following inequality holds true

ω(b∗b) ≤ ||G(ω)||M ||b||2F b ∈ B .

Denoting by ξω ∈ L2
+(A, τ) the cyclic, positive vector representing ω, the map

Dω : B → L2(A, τ) Dω(b) := bξω

extends to a bounded map from F to L2(A, τ).

Example 11.7. Let E` be the Dirichlet form associated to a negative type function ` on a
countable discrete group Γ. Deny’s embedding applies whenever

•
∑

s
1

1+`(s)
|ω(δs)|2 < +∞ ω has finite energy

•
∑
s

ω(δs)

1 + `(s)
λ(s) ∈ λ(Γ)′′ ω has bounded potential.

It is possible, in explicit examples, to find ω which is a coefficient of C∗(G), but not a
coefficient of the regular representation (i.e. ω is singular with respect to τ).

Even if the boundedness of the potential G(ω) of a finite energy functional ω is dropped,
a bound similar to the one above persists. The previous and the following result (see [CS4]),
proved by Jacques Deny in the commutative case (see [Den]), lay at the core of the potential
theory of Dirichlet forms.

Theorem 11.8. (Deny’s inequality) For any finite energy functional ω ∈ A∗+ with potential
G(ω) ∈ P, the following inequality holds true

ω
(
b∗

1

G(ω)
b
)
≤ ||b||2F b ∈ F .

The equality is attained for b = G(ω).

In the noncommutative setting, since, in general, the finite energy functional ω is not a
trace, the proof of the above two results requires considerations of KMS symmetric Dirichlet
forms on standard forms of von Neumann algebras.

A first consequence of the Deny embedding is the following result showing that, among the
finite energy functionals of a Dirichlet space, there are the energy measures or carré du champ
of bounded potentials.

Theorem 11.9. Let G ∈ P ∩M be a bounded potential. Then

• 〈G, b∗b〉F ≤ ‖G‖M · ‖b‖2
F b ∈ B

• Γ[G] ∈ A∗+ is a finite energy functional.

11.2. Multipliers of Dirichlet spaces. The following is another central subject of the
potential theory of Dirichlet spaces whose properties reveal geometrical aspects (see [CS4]).
The classical theory concerning multipliers of the Dirichlet integral of a Euclidean domain
may be found in [MS].
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Definition 11.10. (Dirichlet space multipliers) An element of the von Neumann algebra
b ∈ L∞(A, τ) is a multiplier of F if

b · F ⊆ F , F · b ⊆ F .
By the Closed Graph Theorem, multipliers are bounded operators on F . The ∗-algebra of
multipliers M(F) is a subalgebra of the algebra off all bounded operators on F : M(F) ⊂
B(F).

Example 11.11. Let F` be the Dirichlet space associated to a negative type function ` on
a discrete group Γ. Then the unitaries δt ∈ λ(Γ)′′ are multipliers and

‖δt‖B(F`) = sup
s∈Γ

√
1 + `(st)

1 + `(s)
≤
√

2
√

1 + `(t) t ∈ Γ.

Example 11.12. (Sobolev algebra of multipliers on Riemannian manifolds) In case of the
Dirichlet integral of a compact Riemannian manifold (V, g) having dimension d ≥ 3

E [a] =

∫
V

|∇a|2 dmg a ∈ F := H1,2(V ) ,

from the Sobolev embedding

‖b‖2
2d
d−2

≤ S(V, g) · ‖b‖2
F b ∈ F := H1,2(V, g) ,

S(V, g) being the Sobolev constant, one derives an embedding of the Sobolev algebra

H1,d
∞ (V, g) := H1,d(V, g) ∩ L∞(V,mg)

into the multipliers algebra

H1,d
∞ (V, g)→M(F) ‖a‖B(F) ≤ c · ‖a‖H1,d

∞ (V,g) .

Notice that the d-Dirichlet integral
∫
V
|∇a|d dmg and the seminorm of the Sobolev algebra

H1,d
∞ (V, g) are conformal invariants of (V, g).

Multipliers exist on any Dirichlet space with a certain wealth.

Theorem 11.13. Let I(A, τ) ⊂ L∞(A, τ) be the norm closure of the ideal L1(A, τ) ∩
L∞(A, τ). Then

• (I + L)−1h is a multiplier for any h ∈ I(A, τ)

‖(I + L)−1h‖B(F) ≤ 2
√

5‖h‖∞ h ∈ I(A, τ)

• bounded Lp-eigenvectors of the generator L, are multipliers

h ∈ Lp(A, τ) ∩ L∞(A, τ) Lh = λh ⇒ ‖h‖B(F) ≤ 2
√

5(1 + λ)‖h‖∞
• the algebra of finite energy multipliers M(F) ∩ F is a form core

• the Dirichlet form is regular on the C∗-algebra M(F) ∩ F , norm closure in L∞(A, τ)

• M(F) ∩ F = A provided the resolvent is strongly continuous on A

lim
ε↓0
‖(I + εL)−1a− a‖M = 0 a ∈ A .

Remark 11.14. The definition of multiplier of a Dirichlet space F does not involve properties
of the quadratic form E other than that to be closed. Proofs of existence and large supply
of multipliers are based on the properties of potentials and finite energy states developed in
noncommutative potential theory.
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11.3. Finite energy multipliers and their seminorm. In many situations at hand, where
a Dirichlet form is naturally available on a C∗-algebra A, as for examples on dual of discrete
groups, compact quantum groups and Riemannian manifolds, the Dirichlet algebra is rich
enough to make meaningful investigating whether or not the seminorm a 7→ ‖[D, a]‖∞ is a
Lipschiz seminorm in the sense of Marc Rieffel [Ri1]. This is the key step to investigate A
from a metric point of view. This means that the Connes’ formula

d(φ, ψ) := sup{φ(a)− ψ(a) : a ∈ (E ,F), ‖[D, a]‖ ≤ 1} φ , ψ ∈ A∗+,1
defines a metric on the space of states on A which induce the weak∗-topology.
There are, however, other natural situations in which the Lipschiz algebra is very much
reduced or even collapses to the multiples of the identity. These situations are those in
which energy and volume are distributed singularly with respect to each other. Examples
are furnished by the class of the Dirichlet forms coming from harmonic structures on post
critically finite fractals (see [Ku], [Ki], [Hi]). Some of them will be described in the next
section.
In such situations one may wonders how to replace the Lipschiz algebra by a richer one whose
seminorm satisfies the Rieffel’s conditions of a Lipschiz seminorm. We are going to see that
a candidate is always available in any Dirichlet space.

Theorem 11.15. Let (E ,F) be a regular Dirichlet form on L2(A, τ). For fixed a ∈ L∞(A, τ),
the following properties are equivalent:

• a ∈M(F) ∩ F is a finite energy multiplier;
• the commutator [∂, a] is a bounded operator from F to H;
• the following inequality holds true

‖(∂a)b‖H ≤ ca · ‖b‖F b ∈ B , for some ca ≥ 0 ;

• F is continuously embedded in L2(A,Γ[a]) by the bounded extension of the map

Ma : B → L2(A,Γ[a]) Ma(b) := (∂a)b .

Moreover, for a ∈M(F) ∩ B, by the Leibniz rule we have

[∂, a]b = ∂(ab)− a∂b = (∂a)b b ∈ B
so that, since B is a form core,

‖[∂, a]‖F→H = sup
a∈B

‖(∂a)b‖H
‖b‖F

= ‖Ma‖F→L2(A,Γ[a]) .

The above properties suggest that the role of the Lipschiz algebra L(F) and its seminorm
a 7→ ‖D, a‖ can be played by the algebra M(F) ∩ F of finite energy multipliers endowed by
its seminorm a 7→ ‖[∂, a]‖F→H.

Next example suggests that the change could be from metric to conformal geometry.

Example 11.16. (Finite energy multipliers and conformal geometry) On a compact Rie-
mannian manifold (V, g) having dimension d ≥ 3 and for elements belonging to the Sobolev
algebra a ∈ H1,d

∞ (V, g), by the Hölder inequality and the Sobolev embedding, we have that
for any element of the Dirichlet algebra b ∈ H1,2(V, g) ∩ L∞(A, τ)∫
V

|b|2 · |∇a|2 dmg ≤
(∫

V

|b|
2d
d−2 dmg

) d−2
d ·
(∫

V

|∇a|d dmg

) 2
d ≤ S(V, g) · ‖b‖2

H1,2(V,g) · ‖|∇a|‖2
d

so that the multiplier seminorm is bounded above by the Sobolev seminorm

‖[∇, a]‖F→H ≤
√
S(V, g) · ‖|∇a|‖d .
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Since the latter seminorm is a conformal invariant of (V, g) we have

sup{‖[∇, a ◦ ϕ]‖F→H : ϕ ∈ C o (V, g)} ≤
√
S(V, g) · ‖|∇a|‖d a ∈ H1,d

∞ (V, g) ,

where C o (V, g) is the group of all conformal transformations of the Riemannian manifold.

12. Noncommutative Potential theory on fractals

In this section we apply noncommutative potential theory to study a specific fractal set, the
Sierpinski gasket, from the point of view of Noncommutative Geometry. The study of fractal
sets in NCG, initiated by Connes [Co], has been pursued by Lapidus [La], Guido-Isola [GI1],
[GI2], Cipriani-Sauvageot [CS3], Christensen-Ivan-Schrohe [CIS]. In particular, the results
illustrated below concerning the Sierpinski gasket have been recently extended to the Vicsek
square in [GI3].

Definition 12.1. (Sierpinski gasket) The Sierpinski gasket is the subset K ⊂ C of the plane,
determined in the following way. Let {p1, p2, p3} be the vertices of an equilateral triangle in
the plane C and consider the contractions Fi : C → C Fi(z) := (z + pi)/2 for i = 1, 2, 3.
A compact set K ⊂ C is uniquely determined by the equation

K = F1(K) ∪ F2(K) ∪ F3(K)

as the fixed point of the map C 7→ F1(C) ∪ F2(C) ∪ F3(C) with respect to the Hausdorff
distance on compact subsets of C.

The above equation is referred to as the self-similarity property ofK. It has the consequence
that, by iteration, K can be reconstructed as a whole from any arbitrary small part of it
(synecdoche). Moreover, the gasket has some geometric and analytic features, as for example

• K is not a manifold
• K is not semi-locally simply connected hence
• K does not admit a universal cover
• volume and energy are distributed singularly on K
• there exist localized eigenfunctions,

that force one to consider K as singular space, if analyzed with the tools of classical Newton-
Lipschiz differential calculus and Riemannian differential geometry. We notice also that, it
was precisely the spectral properties to attract physicists’s attentions on self-similar fractals.

12.1. Harmonic structures and Dirichlet forms. The measure theory of K is obviously
dominated, to a certain extent, by the class of self-similar volume measures. These may be
defined, for some fixed (α1, α2, α3) ∈ (0, 1)3 such that

∑3
i=1 αi = 1, as the unique solution of

the self-similarity equation∫
K

f dµ =
3∑
i=1

αi

∫
K

(f ◦ Fi) dµ f ∈ C(K)

When αi = 1/3 for all i = 1, 2, 3 then µ is the normalized Hausdorff measure on K associated
to the restriction of the Euclidean metric: its dimension is d = ln 3/ln 2.

The construction of an interesting class of Dirichlet forms K is based on the notion of
harmonic structure, introduced by J. Kigami. To prepare the discussion we need to fix some
notations:

• word spaces:
∑

0 := ∅ ,
∑

m := {1, 2, 3}m ,
∑

:=
⋃
m≥0

∑
m

• length of a word σ ∈
∑

m: |σ| := m
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• iterated contractions: Fσ := Fi|σ| ◦ . . . Fi1 if σ = (i1, . . . , i|σ|)

• vertices sets: V0 := {p1, p2, p3} , Vm :=
⋃
|σ|=m Fσ(V0)

The quadratic form on the three-point set V0 defined by

E0 : C(V0)→ [0,+∞) E0[a] := (a(p1)− a(p2))2 + (a(p2)− a(p3))2 + (a(p3)− a(p1))2 ,

is a Dirichlet form with respect to any measure on V0. It is the first of a sequence of Dirichlet
forms Em defined on vertices sets Vm which satisfy an energy minimization procedure typical
of potential theory.

Theorem 12.2. The sequence of quadratic forms on C(Vm) m ∈ N, defined by

Em[a] :=
∑
|σ|=m

(5

3

)m
E0[a ◦ Fσ] a ∈ C(Vm)

is an harmonic structure in the sense that

Em[a] = min{Em+1[b] : b|Vm = a} a ∈ C(Vm) .

Theorem 12.3. A well defined quadratic form E : C(K)→ [0,+∞] is defined by

E : C(K)→ [0,+∞] E [a] := lim
m→+∞

Em[a|Vm ] .

It is a lower semicontinuous quadratic form on C(K), which is Markovian in the sense that

E [a ∧ 1] ≤ E [a] a ∈ C(K)

and self-similar in the sense that

E [a] =
5

3

3∑
i=1

E [a ◦ Fi] a ∈ C(K) .

On the domain F ⊂ C(K) where it is finite, E is densely defined and closed on L2(K,µ),
for any self-similar measure µ on K. (E ,F) is thus a Dirichlet form and the associated
self-adjoint operator (Hµ, D(Hµ)) has discrete spectrum.

Notice that, the quadratic form (E ,F) and energy measures Γ[a] are independent upon the
choice of the volume measure µ, while the corresponding self-adjoint operator Hµ and then
its spectrum are. In particular, the Dirichlet algebra coincides with the whole form domain:
B := F ∩ C(K) = F . As a consequence, the derivation (F , ∂,H,J ) which represents
the Dirichlet form is independent upon the choice of the reference volume measure µ. The
divergence operator (F∗, ∂∗) however is dependent upon µ because it is defined as the Hilbert
space adjoint of the densely defined operator (F , ∂) between the spaces L2(K,µ) and H. This
properties, shared with the Dirichlet integral on a bounded interval of the real line, should
be regarded as typical of low dimensional situations.

12.2. Spectral reconstruction of the volume measure. The classical connection be-
tween asymptotics of the spectrum of the Laplace-Beltrami operator and the volume measure
of a Euclidean domain or a Riemannian manifold, referred to H. Weyl, has been generalized
to post critically finite fractal sets and, in particular, to the Sierpinski gasket K, by Kigami-
Lapidus [KiLa 1,2].
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Theorem 12.4. Let (E ,F) be the Dirichlet form associated to a harmonic structure on K
and let (Hµ, D(Hµ) be corresponding self-adjoint operator on space L2(K,µ) of a self-similar
measure µ on K.
The unique positive number dS such that

∑3
i=1(3

5
αi)

dS/2 = 1, called the spectral exponent,
determines the asymptotic behavior of the eigenvalue counting function

0 < lim inf
λ→+∞

]{eigenvalues of Hµ ≤ λ}
λdS/2

≤ lim sup
λ→+∞

]{eigenvalues of Hµ ≤ λ}
λdS/2

< +∞ .

When the measure µ is the most symmetric one so that αi = 1/3 for i = 1, 2, 3, the spectral
exponent dS = ln 9

ln 5
differs from the Hausdorff dimension ln 3

ln 2
of the gasket, endowed with the

Euclidean metric of the plane. The spectral exponent is related by dS = 2dH
dH+1

to the Hausdorff

dimension dH = ln 3
ln 5/3

of K, determined by
∑3

i=1(3
5
)dH = 1, when this set is endowed with a

suitable distance, called resistance metric, associated to the energy form E (see [...]).

By a classical result of H. Weyl, the Riemannian measure of compact Riemannian manifold
can be reconstructed by the asymptotic behavior of the spctrum of the Laplace-Beltrami
operator. In a complete parallel way this can be done on post critically finite fractal sets:
on the Sierpinski gasket K for example, one just replaces the Riemannian measure by one
the self-similar measures and the Dirichlet integral by one the self-similar Dirichlet forms
introduced above.

Let us denote by Mf the multiplication operator on L2(K,µ) by a function f ∈ C(K).

Theorem 12.5. The self-similar measure µ with weights αi = 1/3 can be re-constructed as∫
K

f dµ = TraceDix(Mf ◦H−dS/2µ ) = Ress=dSTrace(Mf ◦H−s/2µ ) f ∈ C(K) .

In the first equality TraceDix denote the Dixmier’s trace while, in the second one, the
notation refers to the residue of the meromorphic extension of the analytic function z 7→
Trace(Mf ◦H−z/2µ ) defined for Re z > dS.

One of the main difficulties encountered in studying the geometry of the gasket rely on the
following phenomenon discovered by Kusuoka [Ku] and investigated by [Hi].

Theorem 12.6. Let (E ,F) be the Dirichlet form associated to a harmonic structure on K.
Then the energy measures Γ[a] of any nonconstant a ∈ F , are singular with respect to all the
self-similar measures on K.

An consequence of the above result is that the Lipschiz algebra of the Dirichlet space F
trivializes: L(F) = C.

12.3. A Fredholm module on Sierpinski gasket. The choice of a volume measure µ onK,
determines a Dirichlet form (E ,F) on L2(K,µ) with domain F ⊂ C(K) and a corresponding
differential calculus (F , ∂,H,J ). As the Dirichlet form is strongly local, the corresponding
tangent bimodule is in fact a C(K)-monomodule, in the sense that left and right actions
coincide.

By a direct application of Theorem 10.12 in Section 10.3, the differential calculus can be used
to construct a natural K-theory invariant on the Sierpinski gasket. Notice that, as K is a
compact subset of the plane C, its K-theory can be calculated as K1(K) =

⊕
i∈N Z with one

generator for each lacuna (connect components of the complement of the gasket).
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Theorem 12.7. Let F be the symmetry with respect to the range of the derivation Im(∂) ⊂ H,
i.e. F := P − P⊥ where P ∈ Proj (H) the projection onto Im(∂).
Then (F,H) is a 2-summable (ungraded) Fredholm module over C(K) and

Trace(|[F, a]|2) ≤ cµ E [a] a ∈ F
for some constant cµ > 0.

The constant function cµ is proportional to the uniform norm of the Green function Gµ of
the self-adjoint operator Hµ. Since the commutator [F, a] vanishes precisely on the constant
functions, the bound above can be interpreted as a kind of Poincaré inequality.

12.4. Spectral triples on Sierpinski gasket. We have seen that independently upon the
choice of the self-similar, reference measure µ, the Lipschiz algebra is trivial L(F) = C.
Consequently, the construction of a meaningful spectral triple on the gasket K cannot rely
on the Dirac operator associated to the self-similar Dirichlet form (E ,F),as discussed in the
Section 9..
To overcome this difficulty, the strategy is to exploit the fact that K is post critically finite
and to imagine K as assembled from a countable sequence of pieces, smaller and smaller in
size, glued together at some of their points.
The Dirac operator on K will be defined as the direct sum of the Dirac operators on these
pieces. To be able to perform explicit calculations with eigenvalues and eigenfunctions, we
will work with a homeomorphic version of the gasket K in which the pieces patched together
are circles (instead of the downward triangles in K, called lacunas).

In this process two points should be noticed. The first is that the action-through-restrictions
of C(K) on the direct sum of the modules corresponding to the circles, encodes the topology of
the gasket. The second is that the Dirac operators on each circle have to be chosen carefully:
they will be the Dirac operators associated to Dirichlet forms on circles corresponding to
exotic (non local) differential structures. This is due to a fundamental discovery by Johnson
[Jo] who proved that the restrictions of finite energy functions a ∈ F to any segment in K,
belong to a particular fractional Sobolev space.

12.4.1. Spectral triples on quasi-circles. We begin to consider on the circle T = {z ∈ C : |z| =
1} differential structures different from the usual one. These are called quasi-circles and are
associated to the following family of Dirichlet forms for α ∈ (0, 1).

Let us consider on T, the normalized Lebesgue measure dz and the Dirichlet integral on L2(T)
with associated Laplace operator ∆. By Fourier transform we have the representation

E1[a] =
∑
k∈Z

|k|2 · |ak|2 a ∈ H1(T) ,

where ak =
∫
T a(z)zk dz are the Fourier coefficients. As the function Z 3 k 7→ |k|2 is negative

definite on the additive group of integers Z, the functions Z 3 k 7→ |k|2α are negative definite
too for any α ∈ (0, 1]. Consequently, the quadratic forms

Eα[a] =
∑
k∈Z

|k|2α · |ak|2 a ∈ Hα(T) ,

are regular Dirichlet forms defined on the subspaces Hα(T) ⊂ L2(T) where they are finite.
The algebra Cγ(T) of Hölder continuous functions of order γ ∈ (α, 1] is a form core contained
in the Dirichlet algebra. Moreover, for α > 1

2
, one has Hα(T) ⊂ C(T) so that in these cases

the Dirichlet algebra coincides with form domain itself.
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As customary, we adopt the notation |z − w| for the distance in T between z, w ∈ T.

Proposition 12.8. (Fractional Dirichlet forms on a circle) The domain Hα(T) is the frac-
tional Sobolev space

Hα(T) = {a ∈ L2(T) :

∫
T

∫
T

|a(z)− a(w)|2

|z − w|2α+1
dzdw} .

and (Eα, Hα(T)) is the quadratic form of the spectral α-root ∆α of the Laplacian ∆, whose
spectrum is given by sp(∆α) = {|k|2α : k ∈ Z}.
The differential calculus associated to (Eα, Hα(T)) is given by the derivation (Hα(T), ∂α,H,J )
where H := L2(T × T) is a symmetric Hilbert C(K)-bimodule with actions and involution
given by

(aξ)(z, w) := a(z)ξ(z, w) , (ξa)(z, w) := ξ(z, w)a(w) , (J ξ)(z, w) := ξ(w, z)

and the derivation ∂α : Hα(T)→ H is given by

∂α(a)(z, w) :=
√
ϕα(zw)(a(z)− a(w)) z, w ∈ T

for a suitable function ϕα ∈ C(T) proportional to a specific Clausen cosine special function.
In particular we have

Eα[a] = ‖∆α/2a‖2
2 =

∫
T

∫
T
ϕ(zw) · |a(z)− a(w)|2 α ∈ Hα(T) .

Notice that the Dirichlet form (Eα, Hα(T)) and then the corresponding differential calculus
are non local and in particular of jumping type. A quasi-circle is the topological space T
endowed with one of the above non-local differential structures. Using the result of previous
sections we have the following

Proposition 12.9. (Spectral Triples on quasi-circles) Let α ∈ (0, 1] and consider on the
Hilbert space Kα := L2(T × T)

⊕
L2(T), the left C(T)-module structure resulting from the

sum of those of L2(T× T) and L2(T) and the operator

Dα :=

(
0 ∂α
∂∗α 0

)
.

Then Aα := {a ∈ C(T) : supz∈T
∫
T
|a(z)−a(w)|2
|z−w|2α+1 < +∞} is a uniformly dense subalgebra of

C(T) and (Aα, Dα,Kα) is a densely defined Spectral Triple on C(T).
Moreover, setting D−1

α to be zero on kerDα we have

i) D−1
α has discrete spectrum and its zeta function is given by

ζDα(s) = 4ζ(αs)s ∈ C

where ζ is the Riemann zeta function;

ii) the dimension of the triple is α−1 and the volume measure on T can be recovered by∫
T
f(z) dz =

α

4
Ress=α−1tr(f |Dα|−s) f ∈ C(T);

iii) the Connes distance on T induces by the spectral triple satisfies, for some c1(ε) , c2(α) > 0

c1(ε) · |z − w|α+ε ≤ dDα(z, w) z, w ∈ T α ∈ (0, 1] , ε > 0 ,

dDα(z, w) ≤ c2(α) · |z − w|α z, w ∈ T α ∈ [
1

2
, 1] ;
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iv) the Dirichlet form (Eα, Hα(T)) can be recovered as a residue of a functional as follows

Eα[a] =
2

α
lim
s→1

(s− 1)tr(|Dα|−s[Dα, a]|Dα|−s) a ∈ Hα(T) .

12.4.2. Dirac operators on Sierpinski gasket. Gluing together spectral triples of quasi-circles
of suitable sizes, it is possible to construct a spectral triple on the gasket itself.

The main lacuna `∅ of the gasket is the triangle with vertices q1 := (p2+p3)/2, q2 := (p3+p1)/2,
q3 := (p1 + p2)/2. Identifying isometrically `∅ with the circle T, we may consider, for any
fixed α ∈ (0, 1), the Dirac operator (C(K), D∅,K∅) where

• K∅ := L2(`∅ × `∅)⊕ L2(`∅)
• D∅ := Dα

• the action of C(K) is given by restriction π∅(a)b := a|`∅ .
For any word σ ∈

∑
consider the Dirac operators (C(K), πσ, Dσ,Kσ) where

• Kσ := K∅
• Dσ := 2|σ|Dα

• the action of C(K) is given by contraction/restriction πσ(a)b := (a ◦ Fσ)|`∅ b.
Finally, consider the Dirac operator (A, π,D,K) where

• K := ⊕σ∈∑Kσ
• π := ⊕σ∈∑πσ
• D := ⊕σ∈∑Dσ

and A is the subalgebra of functions f ∈ C(K) having bounded commutator [D, π(f)] with
the Dirac operator D. Notice that dim Ker(D) = +∞ and that D−1 will be defined to be
zero on Ker(D).

12.4.3. Volume functionals and their spectral dimensions. The first result about the above
triple concerns the spectrum of the associated volume functional. As a reminiscence of the
self-similarity of K, we will notice the appearance of a sequence of complex poles, i.e. complex
dimensions, which are absent in case of a Riemannian manifold.

Theorem 12.10. The volume zeta function ZD of the Dirac operator (C(K), π,D,K), i.e.
the meromorphic extension of the function C 3 s 7→ Trace(|D|−s) is given by

ZD(s) =
4ζ(αs)

1− 3 · 2−s

where ζ denotes the Riemann zeta function. The dimensional spectrum is given by

Sdim = { 1

α
} ∪ { log 3

log 2

(
1 +

2πi

log 3
k
)

: k ∈ Z} ⊂ C

and its abscissa of convergence, called volume dimension, is given by dD = max(α−1, dH)
where dH = log 3

log 2
is the Hausdorff dimension. When α > log 2

log 3
, then dD = dH is a simple pole

and the residue of the meromorphic extension of C 3 s 7→ Trace(f |D|−s) gives the integral
with respect to the dH-dimensional Hausdorff measure HdH

Ress=dDTrace(π(f)|D|−s) =
4dH
log 3

ζ(dH)

(2π)dH

∫
K

f dHdH f ∈ C(K) .
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12.4.4. Connes metrics on Sierpinski gasket. As far as the metric aspects of the Dirac oper-
ator D are concerned, we have

Theorem 12.11. For any α ∈ (0, 1], the algebra A contains the algebra C0,1(K) of Lipschiz
functions on K with respect to the restriction of the Euclidean metric of the plane. It is thus a
dense subalgebra of C(K) and (A, D,K) is a Spectral Triple. In particular, A 3 f 7→ [D, π(f)]
is a Lip-seminorm in the sense of Rieffel [...] and the associated Connes’ metric

ρD(x, y) := sup
f∈A

|f(x)− f(y)|
‖[D, π(f)]‖

x, y ∈ K

is bi-Lipschiz w.r.t. the restriction of the geodesic metric on K.

12.4.5. Energy functionals and their spectral dimensions. By the spectral triple it is possible
to recover, in addition to dimension, volume measure and metric, also the energy form of K.
This is of particular significance because the geometry of the gasket and other self-similar
fractal sets is intimately associated to the energy functional. Moreover, the Dirichlet form will
be obtained as a residue of a corresponding energy functional at a pole (the energy dimension)
which differs from the pole (the volume dimension) at which the residue restitutes the volume
measure. This dimension shift has to be seen as a consequence of the fact that energy and
volume are distributed singularly on K.

Theorem 12.12. Let α0 := log(10/3)/ log 4 and consider the spectral triple (A, D,K) for
α ∈ (0, α0].
i) Then for any a ∈ F and Re(s) > δD, |D|−s/2|[D, π(a)]|2|D|−s/2 is a trace-class operator.

ii) The abscissa of convergence of the meromorphic energy functional

C 3 s 7→ ZD,a(s) := Trace(|D|−s/2|[D, π(a)]|2|D|−s/2)

is δD := max(α−1, dE) where dE := log 12/5
log 2

is called the energy dimension.

iii) If δD = dE then s = δD is a simple pole and the residue of the functional ZD,a at δD is
proportional to the Dirichlet form

Ress=δDTrace(|D|−s/2|[D, π(a)]|2|D|−s/2) = const. E [a] a ∈ F
by a constant independent on a ∈ F .

In the above results concerning the volume and energy functionals associated to the spectral
triple (A, D,K) on the algebra C(K), the residues at the poles dD and δD can be replaced by
the noncommutative integrals given by Dixmier traces, even if with subtleties: for example,
in case of the energy functional, using the Dixmier trace one can reproduces the Dirichlet
form not on the whole form domain but rather on a suitable form core. See [CGIS2] for
details.
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