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Abstract. We prove density estimates and elimination properties for minimizing triplets of func-

tionals which are related to contour detection in image segmentation and depend on free dis-
continuities, free gradient discontinuities and second order derivatives. All the estimates concern
optimal segmentation under Dirichlet boundary conditions and are uniform in the image domain
up to the boundary.

Dedicated to our teachers Ennio De Giorgi and Guido Stampacchia

1. Introduction.
Image segmentation is a relevant problem both in digital image processing and in the understanding
of biological vision.

There exist many different ways to define the tasks of segmentation (template matching, com-
ponent labelling, thresholding, boundary detection, quad-trees, texture matching, texture segmen-
tation) and there is no universally accepted notion (optimality criteria for segmentation, analogies
and differences between biological and automata perspective in segmentation): here the exposition
is confined to a model for decomposing an image field, where is given a function describing the signal
intensity associate to each point (typically the light intensity on a screen image). Such purpose has
a clear connection with the problem of optimal partitions of a domain minimizing the length of the
boundaries.

In simple words the segmentation we look for provides a cartoon of the given image satisfying
some requirements: the decomposition of the image is performed by choosing a pattern of lines of
steepest discontinuity for light intensity, and this pattern will be called segmentation of the image.

The variational formalizations of contour detection in segmentation models provided deeper un-
derstanding of image analysis, produced intriguing mathematical questions (some of them still open)
and entailed global estimates for geometric quantities in visual and automatic perception at both
low and high level vision (see [5], [14], [19], [30]).

Variational models have been extremely successful in a wide variety of restoration problems and
are one of the most active areas of research in mathematical image processing and computer vision.
Now they are applied not only to the problem of image denoising, but also to other restoration
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tasks such as deblurring, blind deconvolution, and inpainting; in particular, imposing a Dirichlet
boundary condition fits the special case of inpainting (see [20], [21], [25]).
These models exhibit the solution of the previous problems as minimizers of appropriately chosen
functionals. The minimization technique for such models involves the solution of partial differential
equations derived as necessary optimality conditions. Perhaps the most basic (fundamental) image
restoration problem is denoising: it forms a significant preliminary step in many machine vision
tasks, such as object detection and recognition; it is also one of the mathematically most intriguing
problems in vision. A key point in designing image denoising models is to preserve relevant image
features, such as those most easily detected by the human visual system, while removing noise. One
such relevant image feature are the edges, say locations of the image where there is a sharp change
in image properties, as like as image points related to object boundaries. Many research activities
aims to models which filter noise but preserve edges; recently there has also been a lot of effort in
preserving other fine scale image features like textures. Often variational and PDE based models
impose geometric properties on the solutions obtained as denoised images: such as smoothness, or
rectifiability or finite length of boundaries.

Here we present some recent results based on the notion of free discontinuity problem which
was introduced by Ennio De Giorgi in [22]. Our framework balances carefully signal smoothing
and segmentation length and allows the study of problems coupling bulk and surface terms, where
discontinuous solutions are admissible and their discontinuity set is the most significant part of the
solution.

Precisely we focus our analysis on the strong Blake & Zisserman functional (see [5], [9], [10], [12],
[13]) with Dirichlet boundary condition, say

F (K0,K1, v) =

∫

Ω̃\(K0∪K1)

∣∣D2v
∣∣2 dx+ µ

∫

Ω̃

|v − g|q dx

+αH1
(
K0 ∩ Ω̃

)
+ βH1

(
(K1 \K0) ∩ Ω̃

)
,

(1)

to be minimized over triplets (K0,K1, v), where K0 ,K1 are Borel sets, K0 ∪ K1 is a closed set,

function v belongs to C2
(
Ω̃ \ (K0 ∪K1)

)
, v is approximately continuous in

(
Ω̃ \K0

)
, equality

v = w holds true a.e. in Ω̃ \ Ω and Ω ⊂⊂ Ω̃ ⊂⊂ R
2 are open sets.

If (K0,K1, u) is a minimizing triplet of F , then K0∪K1 can be interpreted as an optimal segmen-
tation of the monochromatic image of brightness intensity g, while the three elements of a minimizing
triplet (K0,K1, u) play respectively the role of edges, creases and smoothly varying intensity in the

region Ω̃ \ (K0 ∪K1) for the segmented image. The second-order functional (1) was introduced to
overcome the over-segmentation of steep gradients (ramp effect) and other inconvenient which occur
in lower order models as in case of Mumford & Shah functional ([5], [30], [31]).

In Definition 2.6 we recall the notion of essential (locally) minimizing triplet (see [17]); in Theorem
2.7 and Remark 3 we clarify properties of essential minimizing triplets and essential part of admissible
triplets, and provide the essential formulation (23) of Blake & Zisserman functional.

In this paper we prove estimates on minimizers under Dirichlet boundary conditions (see Section
4): upper and lower energy density of the essential locally minimizing triplets; an elimination prop-
erty and a sharp estimate of the Minkowski content for the optimal segmentation set K0 ∪K1 ; the
main results are stated in Theorems 3.1, 4.1, 4.2, 4.3, 4.4 in case of smooth Dirichlet datum. This
kind of estimates are useful in numerical approximation (see [1], [3], [6], [29]). All the estimates on
optimal segmentation in the image domain where noise filtering acts (i.e. in the set Ω) are uniform
up to the boundary ∂Ω.
Discontinuous Dirichlet datum is studied in Section 5: density estimates which are uniform up to
the boundary ∂Ω are proved in this case too (Theorems 5.2, 5.6, 5.7, 5.8, 5.9).
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More explicitly the elimination property (Theorems 4.3 and 5.8) states that, when the intersection
of optimal segmentation with a small ball has less length than an absolute constant times the
radius of the ball, then such segmentation does not intersect the concentric half-radius ball. This
information is useful in the numerical analysis of the problem, that is algorithms can be tuned in
order to eliminate inessential isolated parts of K0 ∪K1, because they are “needless energy” for the
segmentation.

The results about the Minkowski content (Theorems 4.4, 5.9) expresse the agreement between the
Hausdorff one dimensional measure and the Minkowski content of the segmentationK0∪K1. Roughly
speaking, the theorem says that a uniform fattening of an optimal segmentation is a reasonable
approximation of the segmentation itself.

All the above mentioned results are based on the existence of strong solutions under Dirichlet
boundary conditions ([17]) recalled here in Theorem 2.3 (case of smooth Dirichlet datum) and
Theorem 5.1 (case of Dirichlet datum with non empty jump and crease sets), moreover they rely on
several decay estimates: hessian decay estimate at interior points, at boundary points and close to
the boundary for bi-harmonic functions with homogeneous Dirichlet boundary datum (Theorems 3.2,
3.3, 3.4); decay of Blake & Zisserman functional evaluated on minimizing triplets at interior points,
at boundary points and close to the boundary (3.6, 3.7, 3.8). Theorem 3.2 is classic, Theorems
3.3, 3.6, 3.7 are proved in [10],[17], while Theorems 3.4 and 3.8 are related to L2 hessian decay of
bi-harmonic functions at points close to the boundary, were announced in [17] (Remark 7.5) and are
proved in detail here.

We emphasize that the analysis at points close to the boundary (decay Theorems 3.4 and 3.8) is
necessary to avoid counterexamples analogous to Counterexamples 1.1-1.3 in [28] about Mumford

& Shah functional, and to achieve regularity C2(Ω̃ \ (K0 ∪K1)) of intensity level for minimizers
together with closedness of optimal segmentation K0 ∪K1 (and not only the property that K0 ∪K1

is the union of relatively closed subsets of Ω and ∂Ω).
About the quite technical hypotheses ((66)-(72)) assumed in case of nonsmooth Dirichlet datum

we remark that actually they are very natural, in particular: (69) means that each datum discon-
tinuity component cannot live on boundary ∂Ω nor can reach this boundary from interior without
crossing it; (72) simply says that the datum is expressed as an essential triplet; the whole set of
assumptions on datum says that w represents a Dirichlet datum which is noise-free in the region

Ω̃ \ Ω (see (69)-(71)), as it is very natural when facing inpainting problem if noise, blotches and all
artifact to be removed are contained in Ω.

2. Background and notation.
We recall the strong formulation F of Blake & Zisserman functional (see [10]) for 2-dimensional
images.
We refer to [4], [5], [8]–[11], [15], [16], [29]–[31] for motivation and background analysis of variational
approach to image segmentation and digital image processing.
Precisely we study the functional

F (K0,K1, v) =

∫

Ω̃\(K0∪K1)

∣∣D2v
∣∣2 dx+ µ

∫

Ω̃

|v − g|q dx

+αH1
(
K0 ∩ Ω̃

)
+ βH1

(
(K1 \K0) ∩ Ω̃

)
,

(2)

with the aim of minimizing it among admissible triplets (K0,K1, v), say triplets fulfilling a boundary
Dirichlet condition in the sense of the following Definition.
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Definition 2.1. (Admissible triplets) (K0,K1, v) is an admissible triplet if




K0 , K1 Borel subsets of R2, K0 ∪K1 closed,

v ∈ C2
(
Ω̃ \ (K0 ∪K1)

)
, v approximately continuous in

(
Ω̃ \K0

)
,

v = w a.e. in Ω̃ \ Ω .

(3)

Here and in the following Ω , Ω̃ are open sets such that

Ω ⊂⊂ Ω̃ ⊂⊂ R
2 . (4)

Minimizing (2) over (3) corresponds to minimize Blake & Zisserman functional [5] with Dirichlet
boundary datum in 2-dimensional image segmentation: the boundary datum is prescribed by penal-
ization as usual when competing functions belong to a non reflexive space.

Definition 2.2. (Approximate limit)
For any L1

loc function v : Ω → R and x ∈ Ω, z ∈ R := R ∪ {−∞,+∞}, we set z = ap lim
y→x

v(y)

(approximate limit of v at x) if, for every g ∈ C0(R),

g(z) = lim
̺↓0

∫

B̺(0)

g(v(x+ y))dy ; (5)

the function ṽ(x) = ap lim
y→x

v(y) is called a representative of v ; the singular set of v is Sv = {x ∈
Ω : 6 ∃z s.t. ap lim

y→x

v(y) = z} (see [2], [22], [23]).

By referring to [2] and [16]: Dv denotes the distributional gradient of v , ∇v denotes the approximate
gradient of v , SBV (Ω) denotes the De Giorgi class of functions v ∈ BV (Ω) such that the total
variation of Dv is given by:

∫

Ω

|Dv| =
∫

Ω

|∇v| dx+

∫

Sv

|v+ − v−| dH1.

SBVloc(Ω) := {v ∈ SBV (Ω′) : ∀Ω′ ⊂⊂ Ω} ,
GSBV (Ω) :=

{
v : Ω → R Borel function;−k ∨ v ∧ k ∈ SBVloc(Ω) ∀k ∈ N

}
.

GSBV 2(Ω) :=
{
v ∈ GSBV (Ω), ∇v ∈

(
GSBV (Ω)

)2}
.

Remark 1. We notice that in the book [2] there is a slightly different definition of GSBV (say
Definition 4.26 p.235 in [2]): that space strictly contains the spaceGSBV introduced by our definition
above; nevertheless they coincide in case of scalar-valued functions. In that space ([2]), our Definition

(5) of aplim is equivalent H1 a.e. in Ω̃ to the following one

lim
̺↓0

∫

B̺(0)

|g(v(x+ y))− g(z)| dy = 0 ∀g ∈ C0(R) . (6)

This difference does not create any inconvenient since we will apply (5) only component-wise to the
gradient of admissible functions.
The same remark apply to compactness Theorem 4.36 page 240 ([2]), a useful tool which is used
component-wise on vector-valued gradients.

We recall the following result about existence of strong minimizing triplets for Blake & Zisserman
functional under Dirichlet boundary conditions in the simplified case of smooth Dirichlet datum
(about general discontinuous Dirichlet datum we refer to the last Section).
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Theorem 2.3. Let α , β , µ , q , g ,Ω, Ω̃ and w be s.t.

0 < β ≤ α ≤ 2β, µ > 0, q > 1, g ∈ Lq(Ω̃) ∩ L2q
loc(Ω̃) , w ∈ Lq(Ω̃) , (7)

Ω ⊂⊂ Ω̃ ⊂⊂ R
2 , (8)

Ω is an open set with C2 boundary ∂Ω , Ω̃ is an open set , (9)

w ∈ C2(Ω̃) , (10)

D2w ∈ L∞(Ω̃ ) . (11)

Then there exists a triplet (C0, C1, u) which minimizes the functional F defined by (2) with finite
energy, among admissible triplets (K0,K1, v) fulfilling (3).
Moreover any minimizing triplet (K0,K1, v) fulfils:

K0 ∩ Ω̃ and K1 ∩ Ω̃ are (H1, 1) rectifiable sets, (12)

H1(K0 ∩ Ω̃) = H1(Sv) , H1(K1 ∩ Ω̃) = H1(S∇v \ Sv) , (13)
{

v ∈ GSBV 2(Ω̃), hence
v and ∇v have well defined two-sided traces, finite H1 a.e. onK0 ∪K1,

(14)

the function v is also a minimizer of the weak functional F (see [9], [16])

F(z) =

∫

Ω̃

(|∇2z|2 + µ|z − g|q) dy + αH1(Sz) + βH1(S∇z \ Sz) (15)

over

z ∈ Lq(Ω̃) ∩GSBV (Ω̃) s.t. ∇z ∈
(
GSBV (Ω̃)

)2

and z = w a.e. in Ω̃ \ Ω. (16)

Eventually, for any third element of a minimizing triplet v we have

F(v) = F (K0,K1, v) . (17)

We emphasize that in (17), by referring to Definition 2.2, v = ṽ on Ω̃ \ (K0 ∪K1).

Proof. It is a particular case of Theorem 2.2 in [17].

Definition 2.4. (Localization) We will use the symbol FU to denote the functional (2) when Ω̃

is substituted by a Borel set U ⊂ Ω̃

Definition 2.5. (Locally minimizing triplet of F )
An admissible triplet (K0,K1, u), is a locally minimizing triplet of the functional (2) if

FA(K0,K1, u) < +∞ (18)

FA(K0,K1, u) ≤ FA(U0, U1, v) (19)

for every open subset A ⊂⊂ Ω and for every admissible triplet (U0, U1, v) such that

spt(v − u) and (U0 ∪ U1)△(K0 ∪K1) are subsets of A.

Remark 2. We emphasize that Definition 2.5 is equivalent to say that v (the third element of the
triplet) fulfills Definition 3.1 in [16]. This is a consequence of Theorem 2.2 in [17] (on this subject
see also Definition 3.6 and Remark 3.8 in [17]) which is stated precisely in Theorem 2.10 in [18].
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Definition 2.6. (Essential locally minimizing triplet of F ) Given a locally minimizing triplet
(U0, U1, v) of the functional (2), there is another triplet (K0,K1, u) , called essential locally mini-
mizing triplet, uniquely defined by

u = ṽ

K0 = U0 ∩K \ (U1 \ U0)

K1 = U1 ∩K \ U0

where K is the smallest closed subset of U0 ∪ U1 such that ṽ ∈ C2(Ω̃ \K).

We emphasize that the above construction entails that

F (K0,K1, u) = F (U0, U1, v)

as clarified by the following theorem.

Theorem 2.7. Assume (K0,K1, u) is an essential locally minimizing triplet of F . Then u is a
minimizer of functional F , K0 ∪K1 is a closed set and

K0 ∩K1 = ∅ , K0 = K0 \K1 = K0 \K1 , (20)

K1 = K1 \K0 , K1 \K1 ⊂ K0 , K1 \K0 = K1 , (21)

H1(Su△K0) = 0 , H1
(
(S∇u \ Su)△K1

)
= 0 , (22)

F (K0,K1, u) =

∫

Ω̃\(K0∪K1)

∣∣D2u
∣∣2 dx+

∫

Ω̃

|u− g|q dx

+αH1
(
K0 ∩ Ω̃

)
+ βH1

(
K1 ∩ Ω̃

)
.

(23)

Assume (U0, U1, v) is already an essential locally minimizing triplet of F, then, if the construction
of Definition 2.6 were repeated it would produce

(K0,K1, u) = (U0, U1, v).

Proof. Let (U0, U1, v) be a locally minimizing triplet which produces (K0,K1, u) by the construction
in Definition 2.6.
Since u = ṽ , Theorem 2.3 entails that u minimizes F , and

Su ⊂ K0 , (S∇u \ Su) ⊂ (K1 \K0) , (24)

x ∈ K1 ⇒ x 6∈ U0 ⇒ x 6∈ K0 ; x ∈ K0 ⇒ x 6∈ U1 \ U0 ⇒ x 6∈ K1 ; hence K0 ∩K1 = ∅ . The other
relationships in (20) and (21) follow by substitution.
Properties (20), (21) and (24) entail (22), since H1(K0 \ Su) > 0 or H1(K1 \ (S∇u \ Su)) > 0 would
imply minF < minF .
K1 \K0 = K1 entails (23), say the essential representation of Blake & Zisserman functional.

Remark 3. To any admissible triplet we can associate an essential admissible triplet, defined by
exactly the same construction given by Definition 2.6 for minimizing triplets. Functional F , when
evaluated on essential admissible triplets (K0,K1, u), takes the simpler essential formulation given
by (23).

Remark 4. Obviously any essential globally minimizing triplet for F (see Definition 2.11 in [16])
is an essential locally minimizing triplet for F.
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3. Hessian decay estimates for bi-harmonic functions with null boundary data and decay
of weak functional evaluated at local minimizers.
First we show a uniform upper density estimate for the functional F . Then we state hessian decay
estimates and decay estimates for weak functional F in three different geometrical cases: at interior
points, at boundary points and at points close to the boundary.

We introduce a suitable constant in order to handle boundary conditions:




L =
(
C(∂Ω)

)2
+

(
Lip(Dw)

)2

where
(
C(∂Ω)

)
is an uniform estimate of

second derivatives of arc-length parametrization of ∂Ω.

(25)

Theorem 3.1. (Density upper bound for functional F )
Let (K0,K1, u) be an essential locally minimizing triplet for the functional (2) with (7)-(11) and
(25). Then there exist C > 0 and ¯̺ = ¯̺(α, β, L, ‖w‖Lq , ‖g‖Lq ) > 0 such that

H1
(
∂Ω ∩B̺(x)

)
< C̺ ∀x ∈ Ω , ∀̺ ≤ ¯̺ , (26)

and
FB̺(x)∩Ω (K0,K1, u) ≤ c0̺

∀̺ s.t. 0 < ̺ ≤ (¯̺∧ 1) ∀x ∈ Ω s.t. B̺(x) ⊂ Ω̃,
(27)

where c0 = Lπ + 2q−1π
1
2µ

(
‖w‖qL2q(B̺(x))

+ ‖g‖qL2q(B̺(x))

)
+ (2π + C)α.

If q = 2 and g , w ∈ L∞(Ω̃), then we can choose

c0 = Lπ + 2πµ
(
‖w‖2L∞ + ‖g‖2L∞

)
+ (2π + C)α .

Proof. Estimate (26) follows by (25) and Lipschitz property of ∂Ω.
By minimality of (K0,K1, u) for F we get

F (K0,K1, u) ≤ F (Q0, Q1, v) ,

where

v = uχΩ̃\(B̺(x)∩Ω), Q0 =
(
K0 \B̺(x)

)
∪ (∂B̺(x) ∩ Ω) ∪ (∂Ω ∩B̺(x)), Q1 = K1.

Taking into account β ≤ α, since FΩ̃\B̺(x)
(K0,K1, u) = FΩ̃\B̺(x)

(Q0, Q1, v) then

∫

B̺(x)\(K0∪K1)

(
|D2u|2 + µ|u− g|q

)
dy

+ αH1(K0 ∩B̺(x)) + βH1
(
(K1 \K0) ∩B̺(x)

)

≤
∫

B̺(x)\Ω

(
|D2w|2 + µ|w − g|q

)
dy

+µ

∫

B̺(x)∩Ω

|g|q dy + αH1
(
(∂B̺(x) ∩ Ω) ∪ (∂Ω ∩B̺(x))

)

≤ Lπ̺2 + 2q−1µ

∫

B̺(x)\Ω

(|w|q + |g|q) dy

+ µ

∫

B̺(x)∩Ω

|g|q dy + 2πα̺+ αH1
(
∂Ω ∩B̺(x)

)

≤ Lπ ̺2 + 2q−1µ
(
‖w‖qL2q(B̺(x))

+ ‖g‖qL2q(B̺(x))

)
(πρ2)

1
2

+2πα̺+ Cα̺ ,

hence we achieve the proof.
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In order to obtain density lower bounds for the functional F , when evaluated at an essential
minimizing triplet, we need some estimate about bi-harmonic functions and some Decay Theorems
for the functional F when evaluated at an essential minimizing triplet, explicitly: L2 hessian decay
for bi-harmonic functions at interior points (Theorem 3.2), at boundary points (Theorem 3.3) and
at points close to the boundary (Theorem 3.4).

Theorem 3.2. (L2 hessian decay for bi-harmonic function) Let B1 ⊂ R
2 and let z ∈ H2(B1)

be a solution of

∆2z = 0 on B1.

Then for any q > 1 and for every affine function ξ the following inequality holds:
∫

B̺

(
|D2z|2 + |ξ|q

)
dx ≤ c2,q ̺

2

∫

B1

(
|D2z|2 + |ξ|q

)
dx ∀̺ < 1, (28)

where c2,q is an absolute constant.

Proof. See [27], Chap.III, Sect.2.

In [17] we proved that any function which is bi-harmonic in a half-disk and vanishes together with
its normal derivative on the diameter has a suitable decay of hessian L2 norm.

Theorem 3.3. (L2 hessian decay for bi-harmonic functions in half-disk which vanish

together with normal derivative along diameter)
Set B+

1 = B1(0) ∩ {(x, y) ∈ R
2 : y > 0} ⊂ R

2 and Γ = B1(0) ∩ {(x, y)∈R
2 : y = 0}.

Assume z ∈H2(B+
1 ), ∆2z = 0 on B+

1, z = ∂z/∂y = 0 on Γ.
Then

‖D2z‖2
L2(B+

̺ )
≤ ̺2 ‖D2z‖2

L2(B+

1
)

∀̺ ≤ 1. (29)

Proof. See [17], Theorem 6.1.

An analogous estimate can be proved in disks whose center is close to the boundary, as was announced
in Remark 7.5 in [17] and proved in detail here by the following estimate.

Theorem 3.4. (L2 hessian decay for bi-harmonic functions in Bτ
1 which vanish together

with normal derivative along Γτ )
Set

Bτ
̺ = B̺(0) ∩ {(x, y) ∈ R

2 : y > τ} , Γτ = B1(0) ∩ {(x, y)∈R
2 : y = τ } . (30)

Assume −1 < τ < 0, z ∈H2(Bτ
1 ), ∆

2z = 0 on Bτ
1 , z = ∂z/∂y = 0 on Γτ .

Then there is a constant c3 =
(
4 + 2

√
3
)
∨ (16 c2,q/3) such that

‖D2z‖2L2(Bτ
̺ )

≤ c3 ̺
2 ‖D2z‖2L2(Bτ

1
) ∀̺ < 1. (31)

Proof. If (
√
3− 1)/2 ≤ ̺ < 1 the inequality is trivial since by Bτ

̺ ⊂ Bτ
1 we have

‖D2z‖2L2(Bτ
̺ )

≤ (4 + 2
√
3) ̺2 ‖D2z‖2L2(Bτ

1
) . (32)

From now on we assume

̺ <

√
3− 1

2
. (33)

First we examine the case −1/2 < τ < 0:

set r =
√
1− τ2 ≥

√
3/2 , t = ̺− τ (so that t < r by condition (33)) and

Sr =
{
x ∈ R

2 ; |x− (0, τ)| ≤ r , y ≥ τ
}
⊂ Bτ

1 ;
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B1
Τ

B
·

Τ

StSr

Τ

Figure 1. Bτ
̺ ⊂ St ⊂ Sr ⊂ Bτ

1 (case: 0 < ̺ < (
√
3− 1)/2, −1/2 < τ < 0).

then, by scaling in Theorem 3.3 we have
∫

Bτ
̺

|D2z|2 dx ≤
∫

St

|D2z|2 dx ≤
(
t

r

)2 ∫

Sr

|D2z|2 dx (34)

=
(̺− τ)2

1− τ2

∫

Sr

|D2z|2 dx ≤ 4

3
(̺− τ)2

∫

Sr

|D2z|2 dx ;

if ̺ ≥ −τ then by (34)
∫

Bτ
̺

|D2z|2 dx ≤ 16

3
̺2

∫

Sr

|D2z|2 dx ≤ 16

3
̺2

∫

Bτ
1

|D2z|2 dx ;

if ̺ < −τ then Bτ
̺ = B̺ and z is a bi-harmonic function in B−τ , hence by exploiting (34) and

scaling in Theorem 3.2 with the choice ξ = 0 we obtain
∫

B̺

|D2z|2 dx ≤ c2,q

(
̺

−τ

)2 ∫

B−τ

|D2z|2 dx = c2,q

(
̺

−τ

)2 ∫

Bτ
−τ

|D2z|2 dx

≤ c2,q

(
̺

−τ

)2
16

3
τ2

∫

Bτ
1

|D2z|2 dx =
16

3
c2,q ̺

2

∫

Bτ
1

|D2z|2 dx ,

hence by choosing c3 =
(
4 + 2

√
3
)
∨ (16 c2,q/3) we achieve the thesis for any τ and ̺ such that

−1/2 < τ < 0 and ̺ < (
√
3− 1)/2 .

If −1 < τ ≤ −1/2 and (33) then ̺ < 1/2 ≤ −τ , hence Bτ
̺ = B̺ and B1/2 ⊂ Bτ

1 . Then by scaling
Theorem 3.2 and choosing ξ = 0 we have∫

Bτ
̺

|D2z|2 dx =

∫

B̺

|D2z|2 dx ≤ 4 c2,q ̺
2

∫

B1/2

|D2z|2 dx

≤ 4 c2,q ̺
2

∫

Bτ
1

|D2z|2 dx,

and the proof is complete since the case (
√
3− 1)/2 ≤ ̺ < 1 is estimated in (32).

By the previous estimates and a blow-up argument we obtain, as in [10] and [17], the following
decay results for functional F : explicitly the decay of functional F at interior points (Theorem 3.6),
at the boundary points (Theorem 3.7) and close to the boundary (Theorem 3.8).
We need a localization of the functional F , in the form provided by the following definition.
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Definition 3.5. (Localization of F) We will use the symbol F(u,A) to denote the localization

of the functional (15). For any Borel set A ⊂ Ω̃ we set:

F(u,A) =

∫

A

(|∇2u|2 + µ|u− g|q) dy + αH1(Su ∩A) + βH1
(
(S∇u \ Su) ∩A

)
. (35)

Theorem 3.6. (Decay of functional F at interior points of Ω) ([10], Theorem 5.4)
Assume (7). Then, by referring to (28) and to (27) about the meaning of c2,q and c0,

∀k > 2, ∀η, σ ∈ (0, 1) with ησ <
1

c2,q
, ∃ε0 > 0 such that (36)

for all ε ∈ (0, ε0] and B̺(x) ⊂ Ω, if u ∈ GSBV 2(Ω) is a local minimizer of F(·,Ω) with

ρ ≤ εk,

∫

B̺(x)

|g|2qdy ≤ εk

and
αH1(Su ∩B̺(x)) + βH1

(
(S∇u \ Su) ∩B̺(x)

)
≤ ερ, (37)

we have
F(u,Bηρ(x)) ≤ η2−σF(u,Bρ(x)). (38)

Theorem 3.7. (Decay of functional F at boundary points) ([17], Theorem 7.3)
Assume (7)-(11) and (25). Then, by referring to (26) and to (27) about the meaning of ¯̺ and c0,

∀k > 2, ∀η, σ ∈ (0, 1), ∃ε1 > 0, ∃ϑ1 > 0 such that (39)

for all ε ∈ (0, ε1], for any x ∈ ∂Ω , for any u ∈ GSBV 2(Ω) which is an Ω ∩B̺(x) local minimizer

of F(·,Ω ∩B̺(x)) , for any ̺ s.t. B̺(x) ⊂ Ω̃,

0 < ̺ ≤ ˜̺ :=
(
εk ∧ ¯̺∧ (c0 ∨ 1)−1

)
,

∫

B̺(x)

|g|2qdy ≤ εk (40)

and

αH1
(
Su ∩ Ω ∩B̺(x)

)
+ βH1

(
(S∇u \ Su) ∩ Ω ∩B̺(x)

)
< ε̺ , (41)

we have
F(u,Bη̺(x)) ≤ η2−σ max

{
F(u,B̺(x)) , ̺2 ϑ1 L

}
. (42)

The following decay near the boundary also holds.

Theorem 3.8. (Decay of functional F at points close to the boundary ∂Ω)
Assume (7)-(11) and (25). Then, by referring to (26), (27) and to (31) about the meaning of ¯̺, c0
and c3,

∀k > 2, ∀η, σ ∈ (0, 1), with ησ <
1

c3
, ∃ε2 > 0, ∃ϑ2 > 0 such that (43)

for all ε ∈ (0, ε2], for any ̺ ≤ ˜̺, for any x ∈ Ω s.t. dist(x, ∂Ω) < ̺
2 , where ˜̺ is defined in (40), for

any u ∈ GSBV 2(Ω) which is an Ω ∩B̺(x) local minimizer of F(·,Ω ∩B̺(x)) , and

αH1
(
Su ∩ Ω ∩B̺(x)

)
+ βH1

(
(S∇u \ Su) ∩ Ω ∩B̺(x)

)
< ε̺ , (44)

we have
F(u,Bη̺(x)) ≤ η2−σ max

{
F(u,B̺(x)) , ̺2 ϑ2 L

}
. (45)

Proof. The proof is identical to the one of Theorem 3.7, except exploiting Theorem 3.4 in place of
Theorem 3.3 .

Now we define a set which plays an important role in the analysis of regularity for minimizing
triplets.
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Definition 3.9. We define the set

Ω0(K0,K1, v) =

{
x ∈ Ω̃ : lim

r↓0
r−1 FBr(x)(K0,K1, v) = 0

}
(46)

shortly denoted by Ω0 when there is no risk of confusion.

Theorem 3.10. Assume (7)-(11) and (K0,K1, v) is an essential minimizing triplet of F . Then

Ω0(K0,K1, v) is an open subset of Ω̃, precisely:
{
x ∈ Ω̃ : lim

r↓0
r−1 F(v,Br(x)) = 0

}
is an open set, (47)

Ω0 ∩
(
Sv ∪ S∇v

)
= ∅ , (48)

H1
(
Ω̃ ∩

(
(Sv ∪ S∇v) \ (Sv ∪ S∇v)

))
= 0 , (49)

Ω0 ∩ (K0 ∪K1) = ∅ , (50)

H1
(
Ω̃ ∩ ((K0 ∪K1) \ (Sv ∪ S∇v))

)
= 0 . (51)

Proof. Since (K0,K1, v) is an essential minimizing triplet, by (17) we get

FBr(x)(K0,K1, v) = F(v,Br(x)) . (52)

Since v is a minimizer of F (by Theorem 2.3), the theses follow by (1.13) of Theorem 2.2 in [17] and
by Theorem 2.7, Remark 3 in the present paper.

Remark 5. About the estimate of hessian decay at the boundary (Theorem 3.3) we emphasize a key
difference. On the one hand, Schwarz reflection of harmonic functions in upper half disk vanishing
on the diameter is bounded by 1 as a linear operator from H1(B+

1 ) to H1(B−
1 ), say L2 norm of

the hessian is the same in upper and lower half disk (see [7]). On the other hand, Duffin extension
map for bi-harmonic functions vanishing on the diameter together with normal derivative provides
a poor control of H2(B−

1 ) norm in term of H2(B+
1 ) norm as shown by the following example (see

[17], [24]). By setting




vk = rk+1
(
sin((k − 1)ϑ))− k−1

k+1 sin((k + 1)ϑ)
)
, k = 2, 3, 4, . . .

ωk = rk+1
(
cos((k − 1)ϑ))− cos((k + 1)ϑ)

)
, k = −1 and 1, 2, 3, . . .

if we choose z = ω2 − v3 + ω4 − v5 then ‖D2z‖L2(B−

1
) ≈ 12.5761 ‖D2z‖L2(B+

1
).

This depends on the fact that bi-harmonic extension of z may be either even in y (e.g. z = y2) or
odd in y (e.g. z = r3(3 sinϑ− sin(3ϑ)) = 4y3) or a mixing of the two (e.g. z = ω2 − v3).

4. Uniform density estimates for essential minimizing triplets with smooth Dirichlet
datum.
In this section we state and prove the main results in the case when Dirichlet datum w has neither
jump nor crease set.

In all the statements of this section it is understood that the open set Ω is contained in R
2 and

the structural assumptions (7)-(11) hold true.
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Figure 2. Poor L2 hessian estimate for bi-harmonic extension (see Remark 5).

Theorem 4.1. (Density lower bound for the functional F )
Let (K0,K1, u) be an essential minimizing triplet for the functional F with (7)-(11). Then there
exist ε3 > 0 , ̺3 > 0 such that

FB̺(x)(K0,K1, u) ≥ ε3̺ ∀x ∈ (K0 ∪K1) ∩ Ω, ∀̺ ≤ ̺3 . (53)

Proof. Referring to Theorem 3.6, Theorems 3.7 and 3.8, for fixed k > 2 , η , σ ∈ (0, 1) with ησ <
1

c2,q
∧ 1

c3
, choose η′ ∈ (0, 1) such that (η′)1−σc0 < ε0 ∧ ε1, and let ε′ , ϑ′ the constants associated to

η′ , σ by Theorem 3.7.
Set ε = ε0 ∧ ε1 ∧ ε′ and choose ε3 and ̺3 such that

0 < ε3 <
1

2
(ε0η ∧ εη′ ∧ ε2), 0 < ̺3 < (εk0 ∧ εk1 ∧ εk2 ∧ ̺ ∧ (c0 ∨ 1)−1), (54)
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∫

B̺3
(x)

|g|2qdy ≤ 1

2
εk3 , ̺3(ϑ1 ∨ ϑ′ ∨ ϑ2)L <

1

2
(c0 ∧ ε) . (55)

We conclude the proof by separately analyzing the three admissible cases.

1st case. If x ∈ (K0 ∪K1) ∩ Ω with B̺3
(x) ⊂ Ω, then the thesis is proved by Theorem 27.6 in [11]

with the constant ε0 in place of ε3, hence the thesis holds true since ε3 < ε0.

2nd case. If x ∈ (K0 ∪K1)∩ ∂Ω then, by Theorem 2.3, u minimizes F(z,B̺(x)) among z satisfying

(16) and z = u in Ω̃ \B̺(x) and FB̺(x)(K0,K1, u) = F(u,B̺(x)) for every B̺(x) ⊂ Ω̃.
By contradiction, assume that the thesis is false. Then there exist x ∈ (K0∪K1)∩∂Ω and 0 < ̺ ≤ ̺3
such that

FB̺(x)(K0,K1, u) < ε3̺ .

By exploiting Theorem 3.7 as was done in the last section of [17] with ηh−1̺ in place of ̺, with
h ∈ N, h ≥ 2, we get

FB
ηh̺ (x) (K0,K1, u) < ηh(2−σ) max

{
ε3̺ , (η

h−1̺)2ϑ1 L
}

with h ∈ N, h ≥ 2 . (56)

Since

r−1 FBr(x)(K0,K1, u) ≤ η−1(ηh̺)−1 FB
ηh̺ (x)(K0,K1, u) ∀r s.t. ηh+1̺ ≤ r < ηh̺ ,

by letting h → +∞ in the last inequality and exploiting (56), we obtain

lim
r↓0

r−1 FBr(x) (K0,K1, u) = 0 ,

hence, by referring to Definition 3.9, x ∈ Ω0.
Function u is C2 in a neighborhood of x since Ω0 is open. This fact, together with (K0,K1, u)
minimizing triplet, x ∈ (K0 ∪K1) and (50) leads to a contradiction.

3rd case. Now assume by contradiction that x ∈ (K0 ∪K1) ∩ Ω and, referring to (54) and (40) for
the definition of ̺3 and ˜̺, that

0 < dist(x, ∂Ω) < ̺ ≤ ̺3 < ˜̺,

FB̺(x)(K0,K1, u) < ε3̺.

If B̺/2(x) ⊂ Ω then

FB̺/2(x)(K0,K1, u) < 2ε3
̺

2
< ε0

̺

2
,

so we are in the situation of the 1st case.
Otherwise dist(x, ∂Ω) < ̺

2 , then we can repeat the same discussion of 2nd case by using Theorem
3.8 instead of Theorem 3.7: in this way we get x ∈ Ω0. This property leads to a contradiction as
was stated at the end of 2nd case.

Theorem 4.2. (Density lower bound for the segmentation length)
Let (K0,K1, u) be an essential minimizing triplet for the functional (2) with (7)-(11). Then there
exist ε4 > 0, ̺4 > 0 such that

H1 ((K0 ∪K1) ∩B̺(x)) ≥ ε4̺ ∀x ∈ (K0 ∪K1) ∩ Ω, ∀̺ ≤ ̺4. (57)

Proof. There are the same three cases to examine as in Theorem 4.1.
We detail only the second one (x ∈ (K0 ∪K1) ∩ ∂Ω), since the other ones require no change with
respect to the proof of Theorem 4.1.
Let k , η , σ and ε3 , ̺3 be as in Theorem 4.1. We can fix h0 ∈ N such that ηh0(1−σ)(c0 ∨ ε1) < ε3,
where c0 is given in Theorem 3.1.
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If we define ε4 =
ε3
α
ηh0 and ̺4 = ̺3 ∧ 1 and we assume, by contradiction, that there exist

x ∈ (K0 ∪K1) ∩ ∂Ω and ̺ ≤ ̺4 such that

H1((K0 ∪K1) ∩B̺(x)) < ε4̺,

then we get

αH1(K0 ∩B̺(x)) + βH1((K1 \K0) ∩B̺(x)) < ε3η
h0̺ (58)

and also for all h < h0

αH1(K0 ∩Bηh+1̺(x)) + βH1((K1 \K0) ∩Bηh+1̺(x)) < ε3η
h+1̺ , (59)

hence by (52) and Theorem 3.7, and referring to (25) we have

FBη̺(x)(K0,K1, u) ≤ η2−σ max
{
FB̺(x)(K0,K1, u) , ̺

2 ϑ1 L
}

(60)

≤ η2−σ max { c0 ̺ , ε1 ̺ }
= η1−σ max { c0 (η ̺) , ε1 (η ̺) } .

Since by (59)

αH1(K0 ∩Bη ̺(x)) + βH1((K1 \K0) ∩Bη ̺(x)) < ε3(η ̺) ,

by (60) and Theorem 3.7

FBη2̺(x)
(K0,K1, u) ≤ η2−σ max

{
FBη̺(x)(K0,K1, u) , (η̺)

2 ϑ1 L
}

(61)

≤ η1−ση2−σ max { c0 η̺ , ε1 η̺ }
= η2(1−σ) max

{
c0 (η

2 ̺) , ε1 (η
2 ̺)

}
.

By (59) we get

αH1(K0 ∩Bηk ̺(x)) + βH1((K1 \K0) ∩Bηk ̺(x)) < ε3(η
k ̺) , ∀k ≤ h0

so we can iterate Theorem 3.7 h0 times until we get

FB
ηh0̺

(x)(K0,K1, u) ≤ ηh0(2−σ) max
{
FB̺(x)(K0,K1, u) , ̺

2 ϑ1 L
}

≤ ηh0(1−σ) max
{
c0(η

h0 ̺) , ε1(η
h0 ̺)

}
< ε3(η

h0̺) ,

which contradicts Theorem 4.1.

Theorem 4.3. (Elimination Property)
Let (K0,K1, u) be an essential minimizing triplet for the functional (2) with (7)-(11) and let ε4 >
0, ̺4 > 0 as in Theorem 4.2 and ̺ ≤ ̺4. If x ∈ Ω and

H1 ((K0 ∪K1) ∩B̺(x)) <
ε4
2
̺

then

(K0 ∪K1) ∩B̺/2(x) = ∅.

Proof. Assume, by contradiction, that there exists y ∈ (K0∪K1)∩B̺/2(x). Then B̺/2(y) ⊂ B̺(x),
hence

H1
(
(K0 ∪K1) ∩B̺/2(y)

)
≤ H1 ((K0 ∪K1) ∩B̺(x)) < ε4

(̺
2

)
,

therefore y 6∈ K0 ∪K1 by Theorem 4.2.



UNIFORM DENSITY ESTIMATES FOR BLAKE & ZISSERMAN FUNCTIONAL 15

The Minkowski content Mk(E) of a set E ⊂ R
n is the limit (if it exists and is finite) as ̺ ↓ 0

of the n-dimensional Lebesgue measure of the ̺-neighborhood of E divided by ωn−k̺
n−k, where ωh

is the volume of the h-dimensional unit ball. The following result expresses the agreement between
one dimensional Hausdorff measure of optimal segmentation K0 ∪K1 and its Minkowski content. In
simple words the theorem says that a uniform fattening of an optimal segmentation is a reasonable
approximation of the segmentation itself. This property is useful for a variational approximation of
the functional F and for the implementation of a suitable numerical algorithm to find a minimizing
triplet for F (see [1]).

Theorem 4.4. (Minkowski content of the segmentation)
Let (K0,K1, u) be an essential minimizing triplet for the functional F .
Assume (7)-(11) and

g ∈ L2q(Ω̃) . (62)

Then

(i) K0 ∪K1 is (H1, 1) rectifiable;
(ii) the following equality holds

lim
̺↓0

|{x ∈ Ω̃ ; dist(x, (K0 ∪K1) ∩ Ω) < ̺ }|
2̺

= H1
(
(K0 ∪K1) ∩ Ω

)
.

Proof. It can be shown (see [26], Section 3.2.37 and 3.2.39) that

lim inf
̺↓0

|{x ∈ Ω̃ ; dist(x, (K0 ∪K1) ∩ Ω) < ̺ }|
2̺

≥ H1
(
(K0 ∪K1) ∩ Ω

)

since K0 ∪K1 is closed and countably (H1, 1) rectifiable.
By Theorem 2.3, Theorem 2.7, (22) and (51) the function u is a minimizer of functional F , Su∪S∇u

is countably (H1, 1) rectifiable, H1 (Su ∪ S∇u) < +∞ and H1
(
Ω ∩ ((K0 ∪K1) \ (Su ∪ S∇u))

)
= 0,

then K0 ∪K1 is (H1, 1) rectifiable and (i) follows.

Thanks to (i), (K0 ∪K1) ∩ Ω compact and density lower bound (57) of Theorem 4.2 we can apply
Theorem 2.104 in [2] and get the thesis (ii).

Remark 6. We emphasize that all the constants c0, ε3, ε4, ̺3, ̺4 appearing in Theorems 4.1–4.2
depend on the data α, β, µ, g, w.

5. Uniform density estimates for essential minimizing triplets with discontinuous Dirich-
let datum.
In this section we deal with the case of Dirichlet datum that can be discontinuous at the boundary.
To this aim we recall the appropriate general theorem about existence of minimizers: a stronger
result than Theorem 2.3, allowing discontinuous Dirichlet datum. Then we prove density estimates
which are uniform up to the boundary ∂Ω.

Theorem 5.1. Let α , β , µ , q , g ,Ω, Ω̃ ,M , T0 , T1 and w be s.t.

0 < β ≤ α ≤ 2β, µ > 0, q > 1, g ∈ Lq(Ω̃) ∩ L2q
loc(Ω̃) , w ∈ Lq(Ω̃) (63)

hold true.
Ω ⊂⊂ Ω̃ ⊂⊂ R

2 , (64)

Ω is an open set with Lipschitz boundary, Ω̃ is an open set , (65)
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∃ a finite set M s.t. each connected component of (∂Ω\M) is uniformly C2, (66)

(T0 ∪ T1) ∩ ∂Ω is a finite set , (67)

T0, T1 Borel sets, T0 ∪ T1 closed subset of R2, H1
(
(T0 ∪ T1) ∩ Ω̃

)
< +∞ , (68)

∃ ε5 > 0, ̺5 > 0 s.t. H1
(
(T0 ∪ T1) ∩B̺(x) ∩ (Ω̃ \ Ω)

)
≥ ε5̺

∀ x ∈ (T0 ∪ T1) ∩ ∂Ω, ∀ ̺ ≤ ̺5,
(69)

w ∈ C2
(
Ω̃ \ (T0 ∪ T1)

)
, w approximately continuous in

(
Ω̃ \ T0

)
, (70)





D2w ∈ L2(Ω̃ \ (T0 ∪ T1) ), D2w ∈ L∞
(
A \ (T0 ∪ T1)

)

with A open set s.t. ∂Ω ⊂ A ⊂ Ω̃ ,

∃C > 0 : ‖w‖L∞ , ‖∇w‖L∞ , ‖∇2w‖L∞ ≤ C in A ,

Lip(γ′) ≤ C with γ arc-length parametrization of ∂Ω ,

∃ ¯̺> 0 : H1
(
∂Ω ∩B̺(x)

)
< C̺ ∀x ∈ ∂Ω , ∀̺ ≤ ¯̺ ,

(71)

6 ∃ (T0,T1, ω)fulfilling (68),(70),

ω = aplimw in Ω̃ \ T0, (T0 ∪ T1)⊂
6=
(T0 ∪ T1) .

(72)

Then there exists a triplet (C0, C1, u) which minimizes the functional F defined by (2) with finite
energy, among admissible triplets (K0,K1, v) fulfilling (3).
Moreover any minimizing triplet (K0,K1, v) fulfils:

K0 ∩ Ω̃ and K1 ∩ Ω̃ are (H1, 1) rectifiable sets, (73)

H1(K0 ∩ Ω̃) = H1(Sv) , H1(K1 ∩ Ω̃) = H1(S∇v \ Sv) , (74)
{

v ∈ GSBV 2(Ω̃), hence v and ∇v
have well defined two-sided traces, finite H1 a.e. on K0 ∪K1,

(75)

the function v is also a minimizer of the weak functional F (see [9],[16])

F(z) =

∫

Ω̃

(|∇2z|2 + µ|z − g|q) dy + αH1(Sz) + βH1(S∇z \ Sz) (76)

over z ∈ Lq(Ω̃) ∩GSBV (Ω̃) s.t. ∇z ∈
(
GSBV (Ω̃)

)2

and z = w a.e. in Ω̃ \ Ω.
Eventually, for any third element of minimizing triplet v we have

F(v) = F (K0,K1, v) . (77)

Proof. The theorem is a restatement of Theorem 2.2 in [17] .

Remark 7. About all the hypotheses on Dirichlet datum (T0, T1, w) we emphasize that, though they
are quite technical, actually they are very weak assumptions. Moreover their role in the Theorem
is the following: a priori density estimates (69) on the Dirichlet datum reproduce the same density
estimates on the optimal segmentation up to the boundary points; actually (69) means that each
component of datum discontinuity set cannot live on boundary ∂Ω nor can reach this boundary from
interior without crossing it; (72) simply says that the datum is expressed as an essential triplet (see
Remark 3); the whole set of assumptions on data tells that w represents a Dirichlet datum which is

noise-free in the region Ω̃ \Ω, as it is very natural when facing inpainting problem, if noise, blotches
and all artifact to be removed are contained in Ω.

Remark 8. Assumption (67) in Theorem 5.1 can be substituted by the following weaker assumption:

H1 ((T0 ∪ T1) ∩ ∂Ω) = 0 .
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Remark 9. Due to (74) of Theorem 5.1 the theses (47)-(51) of Theorem 3.10 hold true for essential
minimizing triplets of F also under the assumptions of this section: (63)-(72).

We introduce a suitable constant in order to handle boundary conditions:




L =
(
C(∂Ω)

)2
+
(
Lip(∇w)

)2
, where C(∂Ω) is an uniform estimate of

second derivatives of piecewise arc-length parametrization of ∂Ω and
Lip(∇w) is the Lipschitz constant of ∇w in the neighborhood A of ∂Ω.

(78)

Theorem 5.2. (Density upper bound for functional F )
Let (K0,K1, u) be an essential locally minimizing triplet for the functional (2) with (63)-(72) and
(78). Then there exist C > 0 and ¯̺ = ¯̺(α, β, L, ‖w‖Lq , ‖g‖Lq ) > 0 such that

H1
(
∂Ω ∩B̺(x)

)
< C̺ ∀x ∈ Ω , ∀̺ ≤ ¯̺ , (79)

and
FB̺(x)∩Ω (K0,K1, u) ≤ c0̺

∀̺ s.t. 0 < ̺ ≤ (¯̺∧ 1) ∀x ∈ Ω s.t. B̺(x) ⊂ Ω̃,
(80)

where c0 = Lπ + 2q−1π
1
2µ

(
‖w‖qL2q(B̺(x))

+ ‖g‖qL2q(B̺(x))

)
+ (2π + C)α.

If q = 2 and g , w ∈ L∞(Ω̃), then we can choose

c0 = Lπ + 2πµ
(
‖w‖2L∞ + ‖g‖2L∞

)
+ (2π + C)α .

Proof. It is identical to the one of Theorem 3.1 .

Theorem 5.3. (Decay of functional F at interior points of Ω)
Assume (63). Then, by referring to (28) and to (80) about the meaning of c2,q and c0,

∀k > 2, ∀η, σ ∈ (0, 1) with ησ <
1

c2,q
, ∃ε0 > 0 such that (81)

for all ε ∈ (0, ε0] and B̺(x) ⊂ Ω, if u ∈ GSBV 2(Ω) is a local minimizer of F(·,Ω) with

ρ ≤ εk,

∫

B̺(x)

|g|2qdy ≤ εk

and
αH1(Su ∩B̺(x)) + βH1

(
(S∇u \ Su) ∩B̺(x)

)
≤ ερ, (82)

we have
F(u,Bηρ(x)) ≤ η2−σF(u,Bρ(x)). (83)

Proof. It is a restatement of Theorem 5.4 in [10] .

Theorem 5.4. (Decay of functional F at boundary points) ([17], Theorem 7.3)
Assume (63)-(72), (78). Then, by referring to (79) and to (80) about the meaning of ¯̺ and c0,

∀k > 2, ∀η, σ ∈ (0, 1), ∃ε6 > 0, ∃ϑ6 > 0 such that (84)

for all ε ∈ (0, ε6], for any x ∈ (∂Ω) \ (T0 ∪ T1 ∪M) , for any u ∈ GSBV 2(Ω) which is an Ω ∩B̺(x)

local minimizer of F(·,Ω ∩B̺(x)) , for any ̺ s.t. B̺(x) ⊂ Ω̃,

0 < ̺ ≤ ˜̺ :=
(
εk ∧ ¯̺∧ (c0 ∨ 1)−1

)
,

∫

B̺(x)

|g|2qdy ≤ εk (85)

and

αH1
(
Su ∩ Ω ∩B̺(x)

)
+ βH1

(
(S∇u \ Su) ∩ Ω ∩B̺(x)

)
< ε̺ , (86)

we have
F(u,Bη̺(x)) ≤ η2−σ max

{
F(u,B̺(x)) , ̺2 ϑ6 L

}
. (87)
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Proof. The proof is identical to the one of Theorem 3.7 .

The following decay near the boundary also holds.

Theorem 5.5. (Decay of functional F at points close to the boundary ∂Ω)
Assume (63)-(72), (78). Then, by referring to (79), (80) and to (31) about the meaning of ¯̺, c0 and
c3,

∀k > 2, ∀η, σ ∈ (0, 1), with ησ <
1

c3
, ∃ε7 > 0, ∃ϑ7 > 0 such that (88)

for all ε ∈ (0, ε7], for any ̺ ≤ ˜̺, for any x ∈ Ω \ (T0 ∪ T1) s.t. dist(x, ∂Ω) < ̺
2 , where ˜̺ is defined

in (85), for any u ∈ GSBV 2(Ω) which is an Ω ∩B̺(x) local minimizer of F(·,Ω ∩B̺(x)) , and

αH1
(
Su ∩ Ω ∩B̺(x)

)
+ βH1

(
(S∇u \ Su) ∩ Ω ∩B̺(x)

)
< ε̺ , (89)

we have
F(u,Bη̺(x)) ≤ η2−σ max

{
F(u,B̺(x)) , ̺2 ϑ7 L

}
. (90)

Proof. The proof is identical to the one of Theorem 3.8 .

Theorem 5.6. (Density lower bound for the functional F )
Let (K0,K1, u) be an essential minimizing triplet for the functional (2) with (63)-(72), (78). Then
there exist ε8 > 0 , ̺8 > 0 such that, referring to (69), ε8 ≤ ε5 , ̺8 ≤ ̺5 and

FB̺(x)(K0,K1, u) ≥ ε8̺ ∀x ∈
(
(K0 ∪K1) ∩ Ω

)
\M , ∀̺ ≤ ̺8 . (91)

Proof. We can repeat the same proof of Theorem 4.1 at every point

x ∈
(
(K0 ∪K1) ∩ Ω

)
\ (∂Ω ∩ (T0 ∪ T1 ∪M)).

Due to (69), the points in
(
(K0 ∪K1) ∩ ∂Ω

)
\M fulfill (91).

Theorem 5.7. (Density lower bound for the segmentation length)
Let (K0,K1, u) be an essential minimizing triplet for the functional (2) with (63)-(72). Then there
exist ε9 > 0, ̺9 > 0 such that, referring to (69), ε9 ≤ ε5 , ̺9 ≤ ̺5 and

H1 ((K0 ∪K1) ∩B̺(x)) ≥ ε9̺ ∀x ∈
(
(K0 ∪K1) ∩ Ω

)
\M , ∀̺ ≤ ̺9. (92)

Proof. We can repeat the same proof of Theorem 4.2 at every point

x ∈
(
(K0 ∪K1) ∩ Ω

)
\ (∂Ω ∩ (T0 ∪ T1 ∪M)).

Due to (69), the points in
(
(K0 ∪K1) ∩ ∂Ω

)
\M fulfill (92).

Theorem 5.8. (Elimination Property)
Let (K0,K1, u) be an essential minimizing triplet for the functional (2) with (63)-(72) and let ε9 >
0, ̺9 > 0 as in Theorem 5.7 and ̺ ≤ ̺9. If x ∈ Ω \M and

H1 ((K0 ∪K1) ∩B̺(x)) <
ε9
2
̺

then
(K0 ∪K1) ∩B̺/2(x) = ∅.

Proof. Assume, by contradiction, that there exists y ∈ (K0∪K1)∩B̺/2(x). Then B̺/2(y) ⊂ B̺(x),
hence

H1
(
(K0 ∪K1) ∩B̺/2(y)

)
≤ H1 ((K0 ∪K1) ∩B̺(x)) < ε9

(̺
2

)
,

therefore y 6∈ (K0 ∪K1) \M by Theorem 5.7.
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Theorem 5.9. (Minkowski content of the segmentation)
Let (K0,K1, u) be an essential minimizing triplet for the functional F .
Assume (63)-(72) and

g ∈ L2q(Ω̃) . (93)

Then

(i) K0 ∪K1 is (H1, 1) rectifiable;
(ii) the following equality holds

lim
̺↓0

|{x ∈ Ω̃ ; dist(x, (K0 ∪K1) ∩ Ω) < ̺ }|
2̺

= H1
(
(K0 ∪K1) ∩ Ω

)
.

Proof. By Theorem 5.1, Theorem 2.7, (22), (51) and Remark 9, the function u is a minimizer
of functional F , Su ∪ S∇u is countably (H1, 1) rectifiable, H1 (Su ∪ S∇u) < +∞ and H1

(
Ω ∩

((K0 ∪K1) \ (Su ∪ S∇u))
)
= 0, then K0 ∪K1 is (H1, 1) rectifiable and (i) follows.

Thanks to (i), (K0 ∪K1) ∩ Ω compact and density lower bound (92) of Theorem 5.7 we can apply
Theorem 2.104 in [2] to the set (K0 ∪K1 \M) ∩ Ω and get the thesis (ii), since M is finite.

Remark 10. We emphasize that all the constants c0, ε8, ε9, ̺8, ̺9 appearing in Theorems 5.6–5.7
depend on the data α, β, µ, g, w.

Remark 11. All the results in this section hold true also for the essential minimizing triplets of the
main part E of the functional F :

E(K0,K1, v) =

∫

Ω̃\(K0∪K1)

∣∣D2v
∣∣2 dx+ αH1

(
K0 ∩ Ω̃

)
+ βH1

(
(K1 \K0) ∩ Ω̃

)
, (94)

where E is minimized over admissible triplets (Definition 2.1) under assumption:

0 < β ≤ α ≤ 2β , (95)

and (64)–(72).
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