Events
High-dimensional parametric partial differential equations (PDEs) appear in various contexts including control and optimization problems, inverse problems, risk assessment, and uncertainty quantification. In most such scenarios the set of all admissible solutions associated with the parameter space is inherently low dimensional. This fact forms the foundation for the reduced basis method.
Recently, numerical experiments demonstrated the remarkable efficiency of using deep neural networks to solve parametric problems. In this talk, after an introduction into deep learning, we will present a theoretical justification for this class of approaches. More precisely, we will derive upper bounds on the complexity of ReLU neural networks approximating the solution maps of parametric PDEs. In fact, without any knowledge of its concrete shape, we use the inherent low-dimensionality of the solution manifold to obtain approximation rates which are significantly superior to those provided by classical approximation results. We use this low-dimensionality to guarantee the existence of a reduced basis. Then, for a large variety of parametric PDEs, we construct neural networks that yield approximations of the parametric maps not suffering from a curse of dimensionality and essentially only depending on the size of the reduced basis.
Finally, we present a comprehensive numerical study of the effect of approximation-theoretical results for neural networks on practical learning problems in the context of parametric partial differential equations. These experiments strongly support the hypothesis that approximation-theoretical effects heavily influence the practical behavior of learning problems in numerical analysis.
Gitta Kutyniok currently holds an Einstein Chair in the Institute of Mathematics at the Technische Universität Berlin, a courtesy appointment in the Department of Computer Science and Engineering, an Adjunct Professorship in Machine Learning at the University of Tromso, and is also the head of the Applied Functional Analysis Group. She received her Diploma in Mathematics and Computer Science as well as her Ph.D. degree from the Universität Paderborn in Germany, and her Habilitation in Mathematics in 2006 at the Justus-Liebig Universität Gießen. From 2001 to 2008 she held visiting positions at several US institutions, including Princeton University, Stanford University, Yale University, Georgia Institute of Technology, and Washington University in St. Louis. In 2008, she became a full professor of mathematics at the Universität Osnabrück, and moved to Berlin three years later.
She received various awards for her research such as an award from the Universität Paderborn in 2003, the Research Prize of Gießen and a Heisenberg-Fellowship in 2006, the von Kaven Prize by the DFG in 2007, and an Einstein Chair in 2008. She gave the Noether Lecture at the ÖMG-DMV Congress in 2013 and the Hans Schneider ILAS Lecture at IWOTA in 2016. She also became a member of the Berlin-Brandenburg Academy of Sciences and Humanities in 2017, a SIAM Fellow in 2019, and an IEEE Senior Member in the same year.
She was Chair of the SIAM Activity Group on Imaging Sciences from 2018-2019 and is Co-Chair of the first SIAM conference on Mathematics of Data Science taking place this year. She is also, for instance, Scientific Director of the graduate school BIMoS at TU Berlin and Chair of the GAMM Activity Groups on Mathematical Signal- and Image Processing and Computational and Mathematical Methods in Data Science, as well as of the MATH+ Activity Group on Mathematics of Data Science. Her main research interests are in the areas of applied harmonic analysis, compressed sensing, high-dimensional data analysis, imaging science, inverse problems, machine learning, numerical mathematics, partial differential equations, and applications to life sciences and telecommunication.
We will present a new approach to develop a data-driven, learning-based framework for predicting outcomes of physical and biological systems and for discovering hidden physics from noisy data. We will introduce a deep learning approach based on neural networks (NNs) and generative adversarial networks (GANs). We also introduce new NNs that learn functionals and nonlinear operators from functions and corresponding responses for system identification. Unlike other approaches that rely on big data, here we “learn” from small data by exploiting the information provided by the physical conservation laws, which are used to obtain informative priors or regularize the neural networks. We will also make connections between Gauss Process Regression and NNs, and discuss the new powerful concept of meta-learning. We will demonstrate the power of PINNs for several inverse problems in fluid mechanics, solid mechanics and biomedicine including wake flows, shock tube problems, material characterization, brain aneurysms, etc, where traditional methods fail due to lack of boundary and initial conditions or material properties. There are many versions of PINNs, e.g., variational (VPINNs), stochastic (sPINNs), conservative (cPINNs), nonlocal (nPINNs), generalized (xPINNs), etc, and we will provide some highlights. In addition, we will present our recent theoretical results on the convergence and generation of PINNs.
George Karniadakis is from Crete. He received his S.M. and Ph.D. from Massachusetts Institute of Technology (1984/87). He was appointed Lecturer in the Department of Mechanical Engineering at MIT and subsequently he joined the Center for Turbulence Research at Stanford / Nasa Ames. He joined Princeton University as Assistant Professor in the Department of Mechanical and Aerospace Engineering and as Associate Faculty in the Program of Applied and Computational Mathematics. He was a Visiting Professor at Caltech in 1993 in the Aeronautics Department and joined Brown University as Associate Professor of Applied Mathematics in the Center for Fluid Mechanics in 1994. After becoming a full professor in 1996, he continues to be a Visiting Professor and Senior Lecturer of Ocean/Mechanical Engineering at MIT. He is an AAAS Fellow (2018-), Fellow of the Society for Industrial and Applied Mathematics (SIAM, 2010-), Fellow of the American Physical Society (APS, 2004-), Fellow of the American Society of Mechanical Engineers (ASME, 2003-) and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA, 2006-). He received the Alexander von Humboldt award in 2017, the Ralf E Kleinman award from SIAM (2015), the J. Tinsley Oden Medal (2013), and the CFD award (2007) by the US Association in Computational Mechanics. His h-index is 100 and he has been cited over 49,000 times.
We will present a new approach to develop a data-driven, learning-based framework for predicting outcomes of physical and biological systems and for discovering hidden physics from noisy data. We will introduce a deep learning approach based on neural networks (NNs) and generative adversarial networks (GANs). We also introduce new NNs that learn functionals and nonlinear operators from functions and corresponding responses for system identification. Unlike other approaches that rely on big data, here we “learn” from small data by exploiting the information provided by the physical conservation laws, which are used to obtain informative priors or regularize the neural networks. We will also make connections between Gauss Process Regression and NNs, and discuss the new powerful concept of meta-learning. We will demonstrate the power of PINNs for several inverse problems in fluid mechanics, solid mechanics and biomedicine including wake flows, shock tube problems, material characterization, brain aneurysms, etc, where traditional methods fail due to lack of boundary and initial conditions or material properties. There are many versions of PINNs, e.g., variational (VPINNs), stochastic (sPINNs), conservative (cPINNs), nonlocal (nPINNs), generalized (xPINNs), etc, and we will provide some highlights. In addition, we will present our recent theoretical results on the convergence and generation of PINNs.
George Karniadakis is from Crete. He received his S.M. and Ph.D. from Massachusetts Institute of Technology (1984/87). He was appointed Lecturer in the Department of Mechanical Engineering at MIT and subsequently he joined the Center for Turbulence Research at Stanford / Nasa Ames. He joined Princeton University as Assistant Professor in the Department of Mechanical and Aerospace Engineering and as Associate Faculty in the Program of Applied and Computational Mathematics. He was a Visiting Professor at Caltech in 1993 in the Aeronautics Department and joined Brown University as Associate Professor of Applied Mathematics in the Center for Fluid Mechanics in 1994. After becoming a full professor in 1996, he continues to be a Visiting Professor and Senior Lecturer of Ocean/Mechanical Engineering at MIT. He is an AAAS Fellow (2018-), Fellow of the Society for Industrial and Applied Mathematics (SIAM, 2010-), Fellow of the American Physical Society (APS, 2004-), Fellow of the American Society of Mechanical Engineers (ASME, 2003-) and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA, 2006-). He received the Alexander von Humboldt award in 2017, the Ralf E Kleinman award from SIAM (2015), the J. Tinsley Oden Medal (2013), and the CFD award (2007) by the US Association in Computational Mechanics. His h-index is 100 and he has been cited over 49,000 times.
We will present a new approach to develop a data-driven, learning-based framework for predicting outcomes of physical and biological systems and for discovering hidden physics from noisy data. We will introduce a deep learning approach based on neural networks (NNs) and generative adversarial networks (GANs). We also introduce new NNs that learn functionals and nonlinear operators from functions and corresponding responses for system identification. Unlike other approaches that rely on big data, here we “learn” from small data by exploiting the information provided by the physical conservation laws, which are used to obtain informative priors or regularize the neural networks. We will also make connections between Gauss Process Regression and NNs, and discuss the new powerful concept of meta-learning. We will demonstrate the power of PINNs for several inverse problems in fluid mechanics, solid mechanics and biomedicine including wake flows, shock tube problems, material characterization, brain aneurysms, etc, where traditional methods fail due to lack of boundary and initial conditions or material properties. There are many versions of PINNs, e.g., variational (VPINNs), stochastic (sPINNs), conservative (cPINNs), nonlocal (nPINNs), generalized (xPINNs), etc, and we will provide some highlights. In addition, we will present our recent theoretical results on the convergence and generation of PINNs.
George Karniadakis is from Crete. He received his S.M. and Ph.D. from Massachusetts Institute of Technology (1984/87). He was appointed Lecturer in the Department of Mechanical Engineering at MIT and subsequently he joined the Center for Turbulence Research at Stanford / Nasa Ames. He joined Princeton University as Assistant Professor in the Department of Mechanical and Aerospace Engineering and as Associate Faculty in the Program of Applied and Computational Mathematics. He was a Visiting Professor at Caltech in 1993 in the Aeronautics Department and joined Brown University as Associate Professor of Applied Mathematics in the Center for Fluid Mechanics in 1994. After becoming a full professor in 1996, he continues to be a Visiting Professor and Senior Lecturer of Ocean/Mechanical Engineering at MIT. He is an AAAS Fellow (2018-), Fellow of the Society for Industrial and Applied Mathematics (SIAM, 2010-), Fellow of the American Physical Society (APS, 2004-), Fellow of the American Society of Mechanical Engineers (ASME, 2003-) and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA, 2006-). He received the Alexander von Humboldt award in 2017, the Ralf E Kleinman award from SIAM (2015), the J. Tinsley Oden Medal (2013), and the CFD award (2007) by the US Association in Computational Mechanics. His h-index is 100 and he has been cited over 49,000 times.
We will present a new approach to develop a data-driven, learning-based framework for predicting outcomes of physical and biological systems and for discovering hidden physics from noisy data. We will introduce a deep learning approach based on neural networks (NNs) and generative adversarial networks (GANs). We also introduce new NNs that learn functionals and nonlinear operators from functions and corresponding responses for system identification. Unlike other approaches that rely on big data, here we “learn” from small data by exploiting the information provided by the physical conservation laws, which are used to obtain informative priors or regularize the neural networks. We will also make connections between Gauss Process Regression and NNs, and discuss the new powerful concept of meta-learning. We will demonstrate the power of PINNs for several inverse problems in fluid mechanics, solid mechanics and biomedicine including wake flows, shock tube problems, material characterization, brain aneurysms, etc, where traditional methods fail due to lack of boundary and initial conditions or material properties. There are many versions of PINNs, e.g., variational (VPINNs), stochastic (sPINNs), conservative (cPINNs), nonlocal (nPINNs), generalized (xPINNs), etc, and we will provide some highlights. In addition, we will present our recent theoretical results on the convergence and generation of PINNs.
George Karniadakis is from Crete. He received his S.M. and Ph.D. from Massachusetts Institute of Technology (1984/87). He was appointed Lecturer in the Department of Mechanical Engineering at MIT and subsequently he joined the Center for Turbulence Research at Stanford / Nasa Ames. He joined Princeton University as Assistant Professor in the Department of Mechanical and Aerospace Engineering and as Associate Faculty in the Program of Applied and Computational Mathematics. He was a Visiting Professor at Caltech in 1993 in the Aeronautics Department and joined Brown University as Associate Professor of Applied Mathematics in the Center for Fluid Mechanics in 1994. After becoming a full professor in 1996, he continues to be a Visiting Professor and Senior Lecturer of Ocean/Mechanical Engineering at MIT. He is an AAAS Fellow (2018-), Fellow of the Society for Industrial and Applied Mathematics (SIAM, 2010-), Fellow of the American Physical Society (APS, 2004-), Fellow of the American Society of Mechanical Engineers (ASME, 2003-) and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA, 2006-). He received the Alexander von Humboldt award in 2017, the Ralf E Kleinman award from SIAM (2015), the J. Tinsley Oden Medal (2013), and the CFD award (2007) by the US Association in Computational Mechanics. His h-index is 100 and he has been cited over 49,000 times.
CANCELLED
George Karniadakis is from Crete. He received his S.M. and Ph.D. from Massachusetts Institute of Technology (1984/87). He was appointed Lecturer in the Department of Mechanical Engineering at MIT and subsequently he joined the Center for Turbulence Research at Stanford / Nasa Ames. He joined Princeton University as Assistant Professor in the Department of Mechanical and Aerospace Engineering and as Associate Faculty in the Program of Applied and Computational Mathematics. He was a Visiting Professor at Caltech in 1993 in the Aeronautics Department and joined Brown University as Associate Professor of Applied Mathematics in the Center for Fluid Mechanics in 1994. After becoming a full professor in 1996, he continues to be a Visiting Professor and Senior Lecturer of Ocean/Mechanical Engineering at MIT. He is an AAAS Fellow (2018-), Fellow of the Society for Industrial and Applied Mathematics (SIAM, 2010-), Fellow of the American Physical Society (APS, 2004-), Fellow of the American Society of Mechanical Engineers (ASME, 2003-) and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA, 2006-). He received the Alexander von Humboldt award in 2017, the Ralf E Kleinman award from SIAM (2015), the J. Tinsley Oden Medal (2013), and the CFD award (2007) by the US Association in Computational Mechanics. His h-index is 100 and he has been cited over 49,000 times.
We present a mathematical model for coupled thermo-hydro-mechanical processes in fractured porous media, motivated by applications to geothermal energy. The model is based on a mixed-dimensional representation of the host medium and fracture network. The dynamics in the host medium is governed by fully-coupled thermo-poroelasticity, while flow and energy transport can also take place in the fracture network. Fracture deformation, including opening and sliding, is modeled using techniques from contact mechanics. We present a finite volume approach for the mixed-dimensional model, combined with a primal-dual active set strategy for the contact problem.
Contatto: luca.formaggia@polimi.it
George Karniadakis is from Crete. He received his S.M. and Ph.D. from Massachusetts Institute of Technology (1984/87). He was appointed Lecturer in the Department of Mechanical Engineering at MIT and subsequently he joined the Center for Turbulence Research at Stanford / Nasa Ames. He joined Princeton University as Assistant Professor in the Department of Mechanical and Aerospace Engineering and as Associate Faculty in the Program of Applied and Computational Mathematics. He was a Visiting Professor at Caltech in 1993 in the Aeronautics Department and joined Brown University as Associate Professor of Applied Mathematics in the Center for Fluid Mechanics in 1994. After becoming a full professor in 1996, he continues to be a Visiting Professor and Senior Lecturer of Ocean/Mechanical Engineering at MIT. He is an AAAS Fellow (2018-), Fellow of the Society for Industrial and Applied Mathematics (SIAM, 2010-), Fellow of the American Physical Society (APS, 2004-), Fellow of the American Society of Mechanical Engineers (ASME, 2003-) and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA, 2006-). He received the Alexander von Humboldt award in 2017, the Ralf E Kleinman award from SIAM (2015), the J. Tinsley Oden Medal (2013), and the CFD award (2007) by the US Association in Computational Mechanics. His h-index is 100 and he has been cited over 49,000 times.
What is the joint impact of different resolution regimes and capital requirements on the optimal liability structure of a bank holding insured deposits and issuing non-bailinable debt and bail-inable Tier1-capital debt? We address this novel question and find that: 1) a credible bail-in resolution regime rules out extreme leverage and creates value by postponing default; 2) a positive probability of bail-out destroys credibility with dramatic effects on financial risk-taking, to the point of reversing the classical positive link between optimal leverage and growth prospects; and 3) a strict enforcement of the Basel III CET1 capital requirement strongly mitigates the impact of a non-credible resolution regime.
George Karniadakis is from Crete. He received his S.M. and Ph.D. from Massachusetts Institute of Technology (1984/87). He was appointed Lecturer in the Department of Mechanical Engineering at MIT and subsequently he joined the Center for Turbulence Research at Stanford / Nasa Ames. He joined Princeton University as Assistant Professor in the Department of Mechanical and Aerospace Engineering and as Associate Faculty in the Program of Applied and Computational Mathematics. He was a Visiting Professor at Caltech in 1993 in the Aeronautics Department and joined Brown University as Associate Professor of Applied Mathematics in the Center for Fluid Mechanics in 1994. After becoming a full professor in 1996, he continues to be a Visiting Professor and Senior Lecturer of Ocean/Mechanical Engineering at MIT. He is an AAAS Fellow (2018-), Fellow of the Society for Industrial and Applied Mathematics (SIAM, 2010-), Fellow of the American Physical Society (APS, 2004-), Fellow of the American Society of Mechanical Engineers (ASME, 2003-) and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA, 2006-). He received the Alexander von Humboldt award in 2017, the Ralf E Kleinman award from SIAM (2015), the J. Tinsley Oden Medal (2013), and the CFD award (2007) by the US Association in Computational Mechanics. His h-index is 100 and he has been cited over 49,000 times.
Kalman filters for PDEs is an old topic which is theoretically seducing but leads to a so-called curse of dimensionality in its numerical implementation. In order to circumvent this curse of dimensionality, it is now classical to base the numerical strategies on reduced order modeling. This raises the question of the accuracy of the resulting estimator.
Alternatives approaches based on reduced-basis decomposition of the covariance were also developed in the past years, but here with an additional question of stability of the resulting estimator.
Using H-matrix based discretization strategies, a recent numerical tool developed for integral equations discretization, we here show how a full Kalman estimator can now be envisioned PDE models and their associated large discretization, hence freshening up the interest for this old theory.
Contatto: luca.dede@polimi.it
George Karniadakis is from Crete. He received his S.M. and Ph.D. from Massachusetts Institute of Technology (1984/87). He was appointed Lecturer in the Department of Mechanical Engineering at MIT and subsequently he joined the Center for Turbulence Research at Stanford / Nasa Ames. He joined Princeton University as Assistant Professor in the Department of Mechanical and Aerospace Engineering and as Associate Faculty in the Program of Applied and Computational Mathematics. He was a Visiting Professor at Caltech in 1993 in the Aeronautics Department and joined Brown University as Associate Professor of Applied Mathematics in the Center for Fluid Mechanics in 1994. After becoming a full professor in 1996, he continues to be a Visiting Professor and Senior Lecturer of Ocean/Mechanical Engineering at MIT. He is an AAAS Fellow (2018-), Fellow of the Society for Industrial and Applied Mathematics (SIAM, 2010-), Fellow of the American Physical Society (APS, 2004-), Fellow of the American Society of Mechanical Engineers (ASME, 2003-) and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA, 2006-). He received the Alexander von Humboldt award in 2017, the Ralf E Kleinman award from SIAM (2015), the J. Tinsley Oden Medal (2013), and the CFD award (2007) by the US Association in Computational Mechanics. His h-index is 100 and he has been cited over 49,000 times.
After providing the necessary background material, we describe a class of distances coming from optimal Entropy-Transport problems, a recent generalization of optimal transport where also creation and destruction of mass is taken into account.
Inspired by previous work of Gromov and Sturm, we then use these metrics to construct new meaningful distances between metric measure spaces with finite mass.
This talk is based on a joint collaboration with Andrea Mondino and Giuseppe Savaré.
George Karniadakis is from Crete. He received his S.M. and Ph.D. from Massachusetts Institute of Technology (1984/87). He was appointed Lecturer in the Department of Mechanical Engineering at MIT and subsequently he joined the Center for Turbulence Research at Stanford / Nasa Ames. He joined Princeton University as Assistant Professor in the Department of Mechanical and Aerospace Engineering and as Associate Faculty in the Program of Applied and Computational Mathematics. He was a Visiting Professor at Caltech in 1993 in the Aeronautics Department and joined Brown University as Associate Professor of Applied Mathematics in the Center for Fluid Mechanics in 1994. After becoming a full professor in 1996, he continues to be a Visiting Professor and Senior Lecturer of Ocean/Mechanical Engineering at MIT. He is an AAAS Fellow (2018-), Fellow of the Society for Industrial and Applied Mathematics (SIAM, 2010-), Fellow of the American Physical Society (APS, 2004-), Fellow of the American Society of Mechanical Engineers (ASME, 2003-) and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA, 2006-). He received the Alexander von Humboldt award in 2017, the Ralf E Kleinman award from SIAM (2015), the J. Tinsley Oden Medal (2013), and the CFD award (2007) by the US Association in Computational Mechanics. His h-index is 100 and he has been cited over 49,000 times.
Mathematical Seminars
Politecnico di Milano
- Analisi
- Cultura Matematica
- Seminari FDS
- Geometry and Algebra
- Probabilità e Statistica Matematica
- Probabilità Quantistica